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ARTICLE

Aberrant GlyRS-HDAC6 interaction linked to
axonal transport deficits in Charcot-Marie-Tooth
neuropathy
Zhongying Mo1, Xiaobei Zhao2, Huaqing Liu1, Qinghua Hu1, Xu-Qiao Chen2, Jessica Pham1, Na Wei1, Ze Liu1,

Jiadong Zhou1, Robert W. Burgess3, Samuel L. Pfaff4, C. Thomas Caskey5, Chengbiao Wu 2,6, Ge Bai1,4 &

Xiang-Lei Yang1

Dominant mutations in glycyl-tRNA synthetase (GlyRS) cause a subtype of Charcot-Marie-

Tooth neuropathy (CMT2D). Although previous studies have shown that GlyRS mutants

aberrantly interact with Nrp1, giving insight into the disease’s specific effects on motor

neurons, these cannot explain length-dependent axonal degeneration. Here, we report that

GlyRS mutants interact aberrantly with HDAC6 and stimulate its deacetylase activity on α-
tubulin. A decrease in α-tubulin acetylation and deficits in axonal transport are observed in

mice peripheral nerves prior to disease onset. An HDAC6 inhibitor used to restore α-tubulin
acetylation rescues axonal transport deficits and improves motor functions of CMT2D mice.

These results link the aberrant GlyRS-HDAC6 interaction to CMT2D pathology and suggest

HDAC6 as an effective therapeutic target. Moreover, the HDAC6 interaction differs from

Nrp1 interaction among GlyRS mutants and correlates with divergent clinical presentations,

indicating the existence of multiple and different mechanisms in CMT2D.
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Charcot-Marie-Tooth (CMT) disease is a group of geneti-
cally distinct disorders of the peripheral nervous system,
with clinical presentations characterized by progressive

muscle weakness, atrophy, and sensory loss in body extremities1–3.
Collectively, the disease affects one in 2500 people worldwide,
making it the most common inherited neuromuscular disorder2;
however, no treatment is available for CMT patients. Based on the
predominant pathological features, CMT is divided into two major
types—type 1 where abnormalities occur in the myelin sheath
surrounding peripheral axons (CMT1) and type 2, where the
damage is within the axon itself (CMT2), though intermediate
forms also exist4. CMT mainly affects long peripheral nerves,
indicating a length-dependent axonal degeneration.

Aminoacyl-tRNA synthetases are the largest gene/protein
family implicated in CMT3. Glycyl-tRNA synthetase (GlyRS or
GARS) in particular was the first member identified, with over
one dozen dominant mutations associated with CMT type 2D
(CMT2D)5–9. The fundamental activity of this enzyme family in
catalyzing the first reaction in protein synthesis in all cells10, 11

contrasts with the extreme tissue specificity of the disease. Human
GlyRS is composed of three domains: a metazoan-specific helix-
turn-helix WHEP domain; the evolutionarily conserved catalytic
domain; and anticodon-binding domain (Fig. 1a). CMT2D
mutations are found in all three domains of GlyRS (Fig. 1a), and
defective aminoacylation function is not shared among all
CMT2D-associated mutants (GlyRSCMT2D)12, 13. Genetic deletion
of one Gars allele in mice to reduce GlyRS expression to 50% level
does not yield any phenotype14; transgenic overexpression of
wild-type (WT) GlyRS cannot rescue phenotypes in mouse and
Drosophila models of CMT2D15, 16. These results indicate that
CMT2D is not caused by a simple loss of WT protein function,
and instead arises from abnormal activities of mutant
GlyRSCMT2D.

We hypothesized that the abnormal activity of GlyRSCMT2D

starts at the level of protein structure, and found that different
mutations associated with CMT2D cause a shared conformational
opening effect in GlyRS that exposes new protein surfaces to
solution17, 18. The neomorphic conformational opening correlates
with aberrant interactions made by GlyRSCMT2D to Nrp1 and Trk
receptors (through their extracellular domains) to explain the
motor neuron and sensory neuron selectivity, respectively, of
CMT2D17, 19. However, the neomorphic structural opening in
principle would also enable GlyRSCMT2D to gain aberrant inter-
actions with intracellular targets. Furthermore, an aberrant
GlyRS-Nrp1 interaction cannot explain why peripheral nerves are
selectively affected in CMT2D. These outstanding questions
prompted us to look for aberrant interactions of GlyRSCMT2D

that could impose a specific challenge to long peripheral nerves.
Deficits in axonal transport are a common theme in many

neurodegenerative diseases20, 21. Long nerves are particularly
vulnerable to axonal transport deficits, as they require extensive
trafficking of structural elements and signaling molecules
between cell body and nerve endings. In fact, many CMT-
associated genes are directly or indirectly involved in axonal
transport22–24. The cytoskeleton, especially microtubules, pro-
vide the tracks along which long distance axonal transport
occurs21. A major component of the microtubule is α-tubulin,
which undergoes post-translational modifications that regulate
microtubule dynamics and functions25. In particular, acetylation
of α-tubulin at Lys40 facilitates axonal transport by promoting
binding of the motor proteins kinesin and dynein to the
microtubules26–28. The removal of the modification is catalyzed
by histone deacetylase 6 (HDAC6)29, 30, whose inhibition has
been shown to increase α-tubulin acetylation31, rescue axonal
transport defects32, and provide benefits in animal models of
neurodegenerative diseases, including a subtype of CMT2

(CMT2F)23. However, in most cases it is not clear whether the
axonal transport defect is causatively linked to the neurode-
generative diseases, or merely a secondary consequence of other
pathogenic factors.

In this study, we identify HDAC6 as an intracellular molecule
that aberrantly interacts with GlyRSCMT2D. The aberrant inter-
action promotes the deacetylase activity of HDAC6 and impairs
α-tubulin acetylation. Peripheral nerve axonal transport defects
are detected in CMT2D mice before the onset of neurodegen-
eration, suggesting that the deficits are not due to secondary
effects. By using an HDAC6 inhibitor, we are able to rescue the
axonal transport defect and improve motor functions in CMT2D
mice. These results indicate that HDAC6 is an effective ther-
apeutic target for CMT2D and that HDAC6 hyperactivation
contributes to CMT2D as a pathogenic factor. Furthermore, the
GlyRSCMT2D-HDAC6 and GlyRSCMT2D-Nrp1 interaction pat-
terns differ from one another, in a way that correlates with
divergent clinical presentations among various mutations, sug-
gesting that multiple and different mechanisms exist in CMT2D.

Results
GlyRSCMT2D make aberrant interaction to HDAC6. We sear-
ched in databases for potential interaction partners of GlyRS
involved in axonal transport and found HDAC6 as a candidate33.
To investigate the potential interaction, and to explore the effect
of CMT2D mutations, we performed immunoprecipitations using
neural tissues from WT (Gars+/+) and P234KY-mutated
(GarsP234KY/+, numbered after the human protein, omitting the
mitochondrial targeting sequence, also reported as P278KY)
CMT2D mouse littermates. HDAC6 interaction is detected in
CMT2D mice, but not in the WT control animals (Fig. 1b),
indicating that only GlyRSP234KY, but not GlyRSWT, can interact
with HDAC6 in vivo.

To understand whether the effect of P234KY is shared by other
CMT2D-associated mutations, we transfected the mouse motor
neuron cell line NSC-34 with V5-tagged GlyRSCMT2D constructs
of nine different human mutations along with the C157R (also
reported as C201R) and P234KY mutations found in CMT2D
mouse models14, 34. Remarkably, all mutants exhibit aberrant
interaction with HDAC6 (Fig. 1c). However, the strength of the
interaction differs substantially among the mutants. In particular,
the HDAC6 interaction with GlyRSP234KY is stronger than with
GlyRSC157R (Fig. 1c), correlating with the severity of the
phenotype of the two mouse models14, 34. Among the human
mutations, the two anticodon-binding domain mutations S581L
and G598A induce much stronger aberrant HDAC6 interaction
than the other mutations (Fig. 1c). It is worth noting that all CMT
patients carrying the G598A mutation exhibit extremely severe
clinical symptoms and an infantile onset in contrast to the usual
adolescence onset for CMT2D patients35, 36. However, the
pathogenicity of the S581L mutation is unclear. Although the
S581L mutation has been recurrently found in three unrelated
CMT families35, 37, it is also found at a low frequency (http://exac.
broadinstitute.org/) in the general population37, 38.

To clarify whether the HDAC6 interaction is specific for
GlyRSCMT2D, we further tested five missense mutations identified
in the general population with similar frequency as that of the
S581L mutation38. Interestingly, none of the five mutations
induces the HDAC6 interaction (Supplementary Fig. 1), provid-
ing a distinction between S581L and the other variants identified
in the general population. Also, consistent with our results from
NSC-34 cells, the aberrant GlyRS-HDAC6 interaction is clearly
detected in peripheral blood mononuclear cells (PBMCs) of a
CMT patient carrying the S581L mutation, but not of a healthy
volunteer (Fig. 1d).
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GlyRSCMT2D enhance HDAC6 deacetylase activity on α-
tubulin. To gain insight into the effect of the aberrant interac-
tion, we mapped out the binding site on HDAC6 using
GlyRSP234KY. Human HDAC6 is a 1215-amino-acid protein with
two catalytic domains, which are followed by a SE14 domain and

a ubiquitin-binding domain (BUZ) that are responsible for
cytosol retention and aggresome recruitment, respectively39

(Supplementary Fig. 2a). Although the active site of HDAC6
resides in the second catalytic domain40, spatial arrangement
between the two catalytic domains is important, as alterations in
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Fig. 1 GlyRSCMT2D mutants bind to HDAC6 and enhance its deacetylation activity on α-tubulin. a CMT2D-associated mutations mapped on the three
domains of human GlyRS. Two mutations identified in mice are labeled according to their residue numbers in the human protein and with asterisks. b Co-
immunoprecipitation showing strong GlyRS-HDAC6 interaction in brain tissue of CMT (GarsP234KY/+) mice but not WT (Gars+/+) littermates (postnatal
day 7). c Co-immunoprecipitation showing that GlyRSCMT2D proteins (C-terminal V5-tagged) but not GlyRSWT can bind to HDAC6 (endogenous) in
transfected NSC-34 cells. d Co-immunoprecipitation showing GlyRS-HDAC6 interaction in peripheral blood mononuclear cells of a CMT patient carrying
the GlyRS S581L mutation, but not of a healthy donor. e Overexpression of GlyRSP234KY, but not GlyRSWT, enhances HDAC6 deacetylase activity in
HEK293 cell. Statistical analysis was done with two-tailed unpaired Student’s t-test. Data are presented as means ± s.d. (n= 3 biological replicates per
group). f Western blot analysis detecting the level of α-tubulin acetylation in NSC-34 cells transfected with various GlyRS (C-terminal V5-tagged)
constructs. g Correlation analysis showing the relationship between the strength of an aberrant GlyRSCMT2D-HDAC6 interaction and the acetylation level
of α-tubulin in NSC-34 cells expressing various GlyRS proteins. The levels of α-tubulin, acetylated α-tubulin, and HDAC6-bound GlyRS were quantified with
ImageJ and normalized against values of the vector control group. Data are presented as means ± s.d. (n= 3 biological replicates per group)
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the linker region severely affect the deacetylase activity41. As
shown in Supplementary Fig. 2b, removal of the BUZ domain or
of both BUZ and SE14 domains does not seem to weaken the
GlyRSP234KY-HDAC6 interaction, and each of the two catalytic
domains of HDAC6 alone can interact with the mutant GlyRS.

The involvement of the HDAC6 catalytic domains for the
interaction suggests that GlyRSP234KY may influence the
deacetylase activity of HDAC6. Indeed, significant enhancement
of HDAC6 activity was observed in HEK293 cells with ectopic
expression of GlyRSP234KY, but not GlyRSWT (Fig. 1e). To
understand whether the activation of HDAC6 affects α-tubulin,
we detected the level of α-tubulin acetylation in NSC-34 cells
expressing various GlyRSCMT2D mutations (Fig. 1f). The three
mutations that induce the strongest HDAC6 interactions (i.e.,
P234KY, S581L, and G598A; Fig. 1c and Supplementary Fig. 3)
also show greatly reduced levels of α-tubulin acetylation (Fig. 1f).
Overall, a strong inverse correlation (R=−0.9321) was found in
between the strength of an aberrant GlyRS-HDAC6 interaction
and the acetylation level of α-tubulin (Fig. 1c, f, g), supporting the
conclusion that aberrant GlyRS-HDAC6 interaction promotes the
deacetylase activity of HDAC6 and leads to a decrease in α-
tubulin acetylation.

Reduced α-tubulin acetylation in CMT2D mouse sciatic nerves.
Next, we compared the levels of acetylated α-tubulin in CMT2D
and control mice at different ages. A significant decrease in
acetylated α-tubulin level was found in postnatal day 7 (P7)
(Fig. 2a, b) and postnatal day 12 (P12) sciatic nerves (Supple-
mentary Fig. 4a, b) of GarsP234KY/+ mice compared to that of
Gars+/+ mice. Both time points precede the onset of CMT
phenotypes, which happens around postnatal day 15–2014.
Interestingly, the decrease in acetylated α-tubulin is specific to
sciatic nerve and is not found in spinal cord or brain samples
(Fig. 2a, b and Supplementary Fig. 4a, b), consistent with the
peripheral nerve-selective pathology of the disease.

To understand the apparent peripheral nerve-specific decrease
in α-tubulin acetylation, we compared the protein levels of GlyRS
and HDAC6 between GarsP234KY/+ and Gars+/+ mice and did
not observe significant difference (Fig. 2a, c and Supplementary
Fig. 4c, d). However, we found that the level of HDAC6 is
significantly lower in sciatic nerve than in spinal cord and brain
(Fig. 2a), which is consistent with the relatively high acetylation
level of α-tubulin in sciatic nerve in Gars+/+ mice (Fig. 2a, b). In
contrast, the level of GlyRS in the three tissue types is more or less
similar (Fig. 2a). The relatively high level of GlyRS to HDAC6 in
sciatic nerve (Fig. 2c) might provide the explanation for the
peripheral nerve-specific decrease in α-tubulin acetylation in the
CMT2D mice.

HDAC6 has other substrates beyond α-tubulin. Among them,
cortactin and HSP90 are the most studied42, 43. Interestingly, no
significant difference in the levels of the acetylated cortactin and
HSP90 is observed in between WT and CMT2D mice in any of
the three types of neural tissue (Fig. 2a).

Defective axonal transport precedes disease onset. Because the
acetylation of α-tubulin promotes the recruitment of motor
proteins (for both anterograde and retrograde transport) to the
microtubules26, 27, the significant decrease in acetylated
α-tubulin level in the sciatic nerves of GarsP234KY/+ mice suggests
potential axonal transport defects. We chose pre-symptomatic
P12 mice for investigation to ensure that any potential axonal
transport defect is not due to secondary effects of axonal
degeneration. Dorsal root ganglia (DRG) of Gars+/+ and
GarsP234KY/+ mice from the same litter were plated in micro-
fluidic chambers to allow specific monitoring of axonal transport

(Fig. 3a, b and Supplementary Fig. 5). No difference in mor-
phology and growth rate of the DRG axons was observed in
between the Gars+/+ and GarsP234KY/+ cultures. Axonal trans-
port was monitored by quantum dot-labeled nerve growth
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Fig. 2 CMT2D mice exhibit decreased level of acetylated α-tubulin in sciatic
nerves. a Western blot analysis showing decreased α-tubulin acetylation in
sciatic nerves of CMT mice. No substantial change in cortactin and HSP90
acetylation was detected. Postnatal day 7 Gars+/+ and GarsP234KY/+

littermates were used for the analysis. Same amount of total protein (4 μg)
was loaded in each lane. b, c Quantification of relative levels of acetylated
α-tubulin (b) or GlyRS to HDAC6 (c) in three types of neural tissue. The
protein levels were quantified with ImageJ. Statistical analysis was done
with two-tailed unpaired Student’s t-test. Data are presented as means ± s.
d. (n= 3 mice per group)
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factor (QD-NGF) added to the distal side of the DRG neurons
(Fig. 3b, c). Retrograde axonal transport of NGF is critical for
the survival and maintenance of peripheral neurons44. We
found that the NGF transport in the axons of Gars+/+ was
characterized by rapid movements with an instantaneous
velocity of 2.11 ± 0.13 μm s−1 (mean ± SEM; Fig. 3c, d and
Supplementary Movie 1). Almost all movements of QD-NGF
were retrograde, but short-distance anterograde movements
were occasionally observed. In contrast, the transport of NGF in
the axons of GarsP234KY/+ was significantly slower and inter-
rupted by frequent pauses with an instantaneous velocity of
1.20 ± 0.15 μm s−1 (Fig. 3c, d and Supplementary Movie 2). The
pause duration showed a significant increase for the
GarsP234KY/+ (15.08 ± 1.57 s) compared to that of Gars+/+

(6.37 ± 0.66 s) mice (Fig. 3e). Furthermore, there were sub-
stantial increases for the stationary (6.3% to 33.9%) and the
antegrade transport (4.72% to 8.66%) events from Gars
+/+ to GarsP234KY/+ mice. Therefore, GarsP234KY/+ mice

exhibit significant axonal transport deficits in peripheral neu-
rons prior to the onset of CMT phenotypes.

HDAC6 inhibitor rescues the axonal transport defect. To
evaluate whether the axonal transport deficits are linked to
HDAC6 overactivation, we used an HDAC6 inhibitor, tubastatin
A (Tub A)45. We added Tub A (2 μM), or solvent control (0.02%
dimethylsulfoxide (DMSO)) into the cultured DRG neurons from
P12 Gars+/+ and GarsP234KY/+ mice to evaluate their effects on
axonal transport (Fig. 4a). Tub A treatment does not affect QD-
NGF transport in the axons of Gars+/+ DRG neurons; instan-
taneous velocities are 2.87 ± 0.26 μm s–1 and 2.92 ± 0.26 μm s−1

under DMSO and Tub A treatment, respectively (Fig. 4b, c and
Supplementary Movies 3 and 4). In contrast, Tub A treatment
almost fully restored the retrograde axonal transport of QD-NGF
in the GarsP234KY/+ DRG, with an instantaneous velocity of
2.67 ± 0.18 μm s−1 compared to 1.31 ± 0.14 μm s−1 for the DMSO
group (Fig. 4b, c and Supplementary Movies 5 and 6).
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Fig. 3 CMT2D mice exhibit axonal transport defect prior to disease onset. a Experimental design. b A schematic picture of the microfluidic chamber used to
evaluate axonal transport of mouse DRGs. DRGs of postnatal day 12 mice (Gars+/+ and GarsP234KY/+ littermates) were plated in the cell body
compartment. Axons grew across the microgrooves into the axon compartment after 3 days in culture. QD655-labeled NGF (QD-NGF) was added (0.2 nM
final concentration) to the axon compartment for axonal transport live imaging. c Representative kymographs of QD-NGF transport in Gars+/+ and
GarsP234KY/+ mice-derived DRG axons. d, e Instantaneous velocities and pause durations of QD-NGF transport in DRG axons from Gars+/+ and
GarsP234KY/+ littermates. DRGs were dissected and pooled from three mice for each genotype. n represents the number of QD-NGF-bearing endosomes
measured for movements. Statistical analysis was done with two-tailed unpaired Student’s t-test. Data are presented as means ± s.d.
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HDAC6 inhibitor improves motor functions of CMT2D mice.
The above findings prompted us to test if the HDAC6 inhibitor
would be beneficial for CMT2D animals. Tub A (50 mg kg−1

body weight) was administrated intraperitoneally to either
Gars+/+ or GarsP234KY/+ mice starting at postnatal day 35 (P35).
Again, Tub A treatment showed no significant effect on Gars+/+

mice after 2 weeks of treatment (Fig. 5a–c). However, we
observed a significant improvement in muscle strength based on a
hindlimb extension test in the Tub A-treated GarsP234KY/+ mice
compared to vehicle-treated (8% captisol in saline) mice (Fig. 5a).
Moreover, Tub A treatment significantly improved the motor
performance of GarsP234KY/+ mice in the rotarod test (Fig. 5b).
Tub A-treated GarsP234KY/+ animals also maintained a sig-
nificantly longer walking stride compared to that of vehicle-
treated group (Fig. 5c). Importantly, the behavior improvement
corresponds to the significantly elevated acetylated α-tubulin

levels in sciatic nerves of Tub A-treated GarsP234KY/+ mice
compared to vehicle-treated mice (Fig. 5d, e).

Discussion
We demonstrated in this study that in addition to the previously
identified Nrp1 and Trk receptors18, 20, GlyRSCMT2D mutant pro-
tein also aberrantly interacts with HDAC6 (Fig. 1b–d). The aberrant
interaction enhances the deacetylase activity of HDAC6 and reduces
the acetylation level of α-tubulin (Fig. 1e, f). The strong correlation
between the intensity of the aberrant interaction and the extent of
the decrease in α-tubulin acetylation level (Fig. 1g) supports the
conclusion that the aberrant GlyRSCMT2D-HDAC6 interaction leads
to HDAC6 overactivation. Remarkably, in CMT2D mice
(GarsP234KY/+), a decrease in α-tubulin acetylation was specifically
detected in sciatic nerves (Fig. 2a, b and Supplementary Fig. 4a, b),
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consistent with the peripheral nerve selectivity of the disease. In line
with the established role of α-tubulin acetylation in facilitating
axonal transport26, deficits in axonal transport were found in DRG
cultures derived from CMT2D mice (Fig. 3c–e and Supplementary
Movies 1 and 2). It is important to stress that the reduction in α-
tubulin acetylation and the axonal transport deficits were detected
prior to the onset of CMT2D symptoms, suggesting that they are
not consequences of axonal degeneration, but rather contribute to
the cause of the disease. Therefore, the length-dependent axonal
degeneration in CMT2D may be explained by axonal transport
deficits caused by the aberrant GlyRSCMT2D-HDAC6 interaction
and the subsequent HDAC6 overactivation (Fig. 6). Moreover, by
showing that an HDAC6 inhibitor is able to restore high levels of α-
tubulin acetylation in sciatic nerves, rescue axonal transport defects,
and improve motor function in CMT2D mice (Figs. 4 and 5), we
demonstrate that HDAC6 is a promising therapeutic target for
CMT2D.

Although the GlyRSP234KY mutant is ubiquitously expressed in
the CMT2D mice, decrease in α-tubulin acetylation was not
detected in spinal cord and brain samples (Fig. 2a, b). Interest-
ingly, we found that in normal mice (Gars+/+), the level of
acetylated α-tubulin in sciatic nerves is substantially higher than
that in spinal cord and brain (Fig. 2a, b), possibly because pro-
portionally more axons are contained in the sciatic nerve sample,
and high levels of acetylated α-tubulin may be required for

specific functions carried out within the nerve processes, such as
axonal transport. We also found that the level of HDAC6 protein
is lower in sciatic nerves compared with spinal cord and brain
(Fig. 2a, c), which provides a plausible biochemical explanation
for the above observation. Most importantly, GlyRS, in contrast
to HDAC6, has a more uniform distribution, which creates a
higher concentration ratio of GlyRS to HDAC6 in sciatic nerves
(Fig. 2a, c), which may allow the manifestation of the gain-of-
function effect of GlyRSP234KY on HDAC6. Therefore, we suggest
that the peripheral nerve specificity of CMT2D is linked to the
need for peripheral nerves to maintain high levels of acetylated α-
tubulin, creating a selective sensitivity of peripheral nerves to
HDAC6 overactivation.

Interestingly, unlike α-tubulin, the acetylation levels of two
other HDAC6 substrates (i.e., cortactin and HSP90) are not
reduced in sciatic nerves of the CMT2D mice. Also, noticeably, in
normal mice (Gars+/+), the acetylation levels of cortactin and
HSP90 in sciatic nerves are not higher than that in spinal cord
and brain (Fig. 2a). Possibly, consistent with the above idea, the
relatively low levels of acetylated cortactin and HSP90 substrates
make them less sensitive to HDAC6 activity change. It is also
possible that an additional deacetylase, not affected by
GlyRSP234KY, is involved. Regardless, these observations indicate
apparent selectivity in the effect of a GlyRS mutation at both the
tissue level and the substrate level.
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All GlyRSCMT2D mutants we tested, including the ambiguous
GlyRSS581L, induce a gain-of-function interaction with HDAC6
(Fig. 1c). However, the strength of the aberrant interaction varies
substantially. Particularly, among the human mutations, S581L
and G598A induce the strongest HDAC6 interaction; whereas,
E71G, L129P, S211F, G240R, E279D, H418R, and G526R induce
the aberrant interaction more weakly (Fig. 1c and Supplementary
Fig. 3). The strong aberrant GlyRSS581L-HDAC6 interaction may
explain why the mutation is recurrently identified in CMT
patients35, 37. Indeed, an aberrant GlyRS-HDAC6 interaction was
detected in a CMT patient carrying the S581L mutation (Fig. 1d).
Although many CMT2D mutations induce a relatively weak
interaction with HDAC6 in NSC-34 cells, there is a clear dis-
tinction between the mutations found in CMT2D patients versus
the benign variants identified in the general population, which
induce no HDAC6 interaction at all (Supplementary Fig. 1).
Nevertheless, the relatively weak HDAC6 interaction for many
GlyRSCMT2D mutants suggests the possibility of having other
mechanisms that influence the length-dependent vulnerability of
axons in CMT2D.

It is worth noting that the reported clinical presentations of
patients carrying the S581L and G598A mutations are atypical for
CMT2D35. The S581L and G598A patients have more severe
distal weakness and wasting in the lower limbs35, in contrast to
the upper limb predominance found in other CMT2D
patients6, 46. Thus, the aberrant GlyRSCMT2D-HDAC6 interaction
appears to correlate with the divergent clinical presentation.
Moreover, the G598A mutation can induce strong aberrant
interactions of GlyRS with both Nrp1 and HDAC6, potentially
explaining the severe, early-onset clinical symptoms of patients
carrying this mutation.

Like G598A, the P234KY mutation found in mice also has the
ability to induce strong aberrant interactions with both Nrp118

and HDAC6 (Fig. 1b, c), correlating with the severe phenotypes
of this CMT2D mouse model. In previous work18, we have
demonstrated that targeting the Nrp1 signaling pathway by
overexpressing vascular endothelial growth factor improves
motor functions in the GarsP234KY/+ mice. Here, in the same
mouse model, we also demonstrate that targeting HDAC6 can
reach a similar level of functional improvement. Neither treat-
ment alone has reached full recovery, suggesting potential benefit
of a combination therapy that targets both pathways.

Taken together, we propose that CMT2D neuropathy results
from multifactorial pathogenic mechanisms, and different
disease-associated mutations may have different predominance in
mechanisms that contribute to the overall pathophysiology. The

most effective therapy may need to target multiple pathways, or at
least the predominantly dysregulated pathway in each patient.

Methods
Cell culture and western blot analysis. HEK293 cells and NSC-34 cells were
obtained from American Type Culture Collection without further authentication.
Cells were cultured in Dulbecco’s modified Eagle’s media (11995; Gibco) supple-
mented with Pen/Strep (15140, Gibco) and 10% fetal bovine serum (FB-12,
Omega). Sequences of human GlyRS (WT or CMT mutants) were inserted into the
pcDNA6v5c plasmid for overexpression purpose. Sequences of human HDAC6
(full length or fragments) were inserted into either the pFlagCMV or the pmCherry
plasmid for overexpression purpose. All transfections were done with Lipofecta-
mine 2000 (Invitrogen) when cells reach ~80% confluence. Forty-eight hours after
transfection, cells were washed with phosphate-buffered saline (PBS) and then
lysed with the lysis buffer (#9803; Cell Signaling Technology; 20 mM Tris-HCl [pH
7.5], 150 mM NaCl, 1 mM Na2EDTA, 1 mM EGTA, 1% Triton, 2.5 mM sodium
pyrophosphate, 1 mM β-glycerophosphate, 1 mM Na3VO4, and 1 μg mL−1 leu-
peptin) supplemented with protease inhibitor (Roche). The supernatant of the
lysate was subjected to western blotting. Western blot images have been cropped
for presentation. Full-size images are presented in Supplementary Fig. 6 with the
information on antibody dilutions included. The antibodies used in this study
include anti-GlyRS (44E9 from aTyr Pharma [proprietary], 4.4 mg mL−1, 1:2000;
sc-98614 from Santa Cruz, 0.2 mg mL−1, 1:500), anti-V5 (R96-CUS, Invitrogen,
1.2 mg mL−1, 1:3000), anti mCherry (5993–100, BioVision,
0.5 mg mL−1, 1:500), anti-acetylated-cortactin (09–881, EMD Millipore,
1.0 mg mL−1, 1:500), and anti-acetylated-HSP90 (600-401-981, Rockland immu-
nochemical Inc., 1.0 mg mL−1, 1:500). Other antibodies, including anti-HDAC6
(#7612, 1:1000), anti-Flag (#2908, 1:1000), anti-acetylated-α-tubulin (#5335,
1:1000), anti-α-tubulin (#3873, 1:2000), anti-cortactin (#3503, 1:1000), and anti-
HSP90 (#4877, 1:1000) are from Cell Signaling. Antibody validation information is
available in the product’s manual.

Immunoprecipitation. A unit of 2 µg of anti-V5 (R96-CUS; Invitrogen), anti-
HDAC6 (#7612; Cell Signaling), anti-Flag (#2368; Cell Signaling) antibodies,
mouse IgG (#5415; Cell Signaling), or rabbit IgG (#3900; Cell Signaling) were
coupled to 30 µl of protein G-sepharose (Amersham Biosciences) beads and used
for immunoprecipitations. Supernatant of HEK293 cell lysates, NSC-34 cell lysates,
or mouse brain tissue lysates were then added and incubated with the antibodies
for 3 h or overnight at 4 °C. The G-sepharose beads were then washed four times
with 1 mL of cold PBS buffer (pH 7.4). The bead-bound proteins were eluted and
denatured with SDS loading buffer and subjected to SDS-polyacrylamide gel
electrophoresis (SDS-PAGE) and western blotting.

PBMC isolation and immunoprecipitation. Blood samples from a CMT2D
patient and a healthy donor were requested under the Baylor College of Medicine
Institutional Review Board-approved consent. PBMCs were isolated from whole
blood (10 mL) by following the manufacture’s protocol (Lymphoprep, Stem Cell
Tech). Erythrocyte contamination was removed by suspending the cell pellet in
ACK lysing buffer (12002-070; Lonza Walkersville Inc.) followed by washing twice
using RPMI medium (30-2001, Gibco). The cell pellet was then lysed with the lysis
buffer (#9803; Cell Signaling Technology; 20 mM Tris-HCl [pH 7.5], 150 mM
NaCl, 1 mM Na2EDTA, 1 mM EGTA, 1% Triton, 2.5 mM sodium pyrophosphate,
1 mM β-glycerophosphate, 1 mM Na3VO4, and 1 μg mL−1 leupeptin) supple-
mented with protease inhibitors (Roche). Protein concentrations of the
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Fig, 6 A model for the mechanism by which GlyRSCMT2D impairs axonal transport. Left, α-tubulin acetyl-transferase (αTAT) and HDAC6 deacetylase are
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supernatants were quantified using the Bradford method against a standard curve
of bovine serum albumin. The lysates were then brought to the same concentration
using the lysis buffer, and equal amounts of total protein were loaded to protein G-
sepharose (Amersham Biosciences) beads previously incubated with either anti-
HDAC6 antibody (#7612; Cell Signaling) or anti-Rabbit IgG (#3900; Cell Signaling)
overnight at 4 °C under gentle rotation. The G-sepharose beads were then washed
four times with 1 mL of cold PBS buffer (pH 7.4). The bead-bound proteins were
eluted and denatured with SDS loading buffer and subjected to SDS-PAGE and
western blotting.

HDAC6 deacetylase activity assay. Fluor-de-Lys® HDAC6 fluorometric drug
discovery kit (BML-AK516-0001; Enzo Life Science) was used according to the
manufacturer’s instruction. HEK293 cells around 80% confluence were transfected
with either empty pcDNA6v5c plasmid or pcDNA6v5c containing the GlyRS (WT
or P234KY) sequences (five 10 cm dishes for each). Forty-eight hours after
transfection, cells were washed with PBS and then lysed with the lysis buffer. The
supernatant was then used for immunoprecipitation with protein G-sepharose
beads pre-incubated with anti-HDAC6 antibodies (#7612; Cell Signaling) overnight
at 4 °C. The G-sepharose beads were then washed four times with 1 mL of cold PBS
buffer (pH 7.4). The bead-bound proteins were incubated with the soft elution
buffer (0.2% [w/v] SDS, 0.1% [V/V] Tween-20, and 50 mM Tris-HCl, pH 8.0) for 7
min at room temperature with rotation at 1000 r.p.m. The eluted proteins were
used for the activity assay. Reactions were stopped after 60 min with Fluor-de-Lys®

Developer II and the fluorescence was measured with the excitation wavelength at
360 nm and the emission wavelength at 460 nm.

Mice. WT (Gars+/+) and P234KY-CMT2D (GarsP234KY/+) mice used in this study
are predominantly in C57BL/6J background. All animal protocols and BSL2+
safety protocols were approved by The Scripps Research Institute Institutional
Animal Care and Use Committee. Daily intraperitoneal injections were started on
Gars+/+ or GarsP234KY/+ mice at postnatal day 35 for 2 weeks (5 days on and
2 days off). Tub A (101763-516; SELLECK Chemicals) was dissolved in vehicle (8%
captisole [Cydex] in saline) and administrated to mice at 50 mg kg−1 body weight.
Analyses were performed on approximately equal numbers of male and female
mice selected randomly from populations. All behavioral experiments were per-
formed in a blind manner.

Mouse brain, spinal cord, and sciatic nerve (P7) samples were minced by razor
blade and then homogenized with the lysis buffer (#9803; Cell Signaling
Technology; 20 mM Tris-HCl [pH 7.5], 150 mM NaCl, 1 mM Na2EDTA, 1 mM
EGTA, 1% Triton, 2.5 mM sodium pyrophosphate, 1 mM β-glycerophosphate, 1
mM Na3VO4, and 1 μg mL−1 leupeptin) supplemented with protease inhibitors
(Roche) on ice and centrifuged at top speed for 10 min at 4 °C. The supernatants
were then collected and the total protein concentrations were determined by
Bradford assay. The samples were then subjected to western blotting. Mice sciatic
nerve (P12 and adult) samples were homogenized by immersing into liquid
nitrogen and pulverizing with urea lysis buffer (8 M urea, 2 M thiourea, 3% SDS,
75 mM dithiothreitol, 0.03% bromophenol blue, and 0.05 M Tris-HCl, pH 6.8). The
mixtures were then centrifuged at top speed for 10 min at 4 °C and the
supernatants were then subjected to western blotting.

DRG dissection and microfluidic chamber culture. The microfluidic chambers
were cleaned, sterilized, and assembled as described previously41. Briefly, the
chambers were hand-washed in 1% Alconox and rinsed three times with Milli-Q
water for 30 min each time. After immersing the clean chambers in 70% ethanol for
2 h, the chambers were sterilized on both sides for 20 min under ultraviolet and
then stored in a sterile 15 cm dish sealed with Parafilm at room temperature. The
coverslips used for the culture were coated with poly-L-lysine (95036–792; Trevi-
gen) and 50 ng mL−1 mouse laminin (10571–318; Trevigen) before the dissection.
DRG neurons from postnatal day 12 mice (Gars+/+ and GarsP234KY/+) were dis-
sected and cultured in microfluidic chambers as reported47, 48. DRGs were dis-
sected free proximally and distally, and kept in tubes filled with 2 mL dissection
medium (Hibernate A plus B27 and GlutaMax [invitrogen]) on ice. Type 1 Col-
lagenase powder (LS004194; Worthington) was dissolved in the dissection medium
at a final concentration of 1 mgmL−1, filtered, and activated by incubating at 37 °C
for 1 h. DRGs were transferred to a 15 mL tube with 5 mL dissection medium and
incubated at 37 °C for 8 min. The medium was then replaced with 2 mL Col-
lagenase solution and the tubes were incubated in 37 °C water bath for 30 min with
gentle shaking every 5 min. DRGs were then triturated gently with a 1 mL pipet for
about 2 min. The tubes were left on the rack for 1 min and then the medium was
transferred to a new tube. The trituration was repeated three times and the
supernatant was then centrifuged at 3000 × g for 4 min. Cell pellets were suspended
in 200 μL dissection medium. The cell suspension was seeded in the microfludic
chamber (20 µL per well) and placed in the incubator (37 °C, 5% CO2). Thirty
minutes later, growth medium (Neurobasal plus B27, GlutaMax, Penstrap, and 100
ng mL−1 NGF) was added to each well. Growth medium was replaced every 2 days.
The neurites start to grow across the microgrooves around day 3. After 4 days, the
DRG cultures were subjected to QD-NGF axonal transport assay.

For the evaluation of Tub A effect, growth medium was carefully replaced with
fresh growth medium containing either Tub A (2 μM) or solvent control (0.02%

DMSO) after 4 days’ culture. The DRG cultures were then incubated for 24 h and
subjected to QD-NGF axonal transport assay.

QD-NGF axonal transport assay. Mono-biotinylated NGF (mBtNGF) was
produced and purified as previously described49. Briefly, HEK293FT cells were
co-transfected by two vectors containing either preproNGF or Escherichia coli
biotin ligase BirA. Mature mBtNGF was secreted into cell media and was further
purified using Ni-NTA affinity chromatography. Both the cell body compartment
and the axonal compartment were rinsed and depleted of NGF in Neurobasal
media for 2 h. Quantum dot-conjugated mBtNGF (QD-NGF) was prepared by
mixing 50 nM mBtNGF dimer with 50 nM streptavidin-conjugated QD655
(Cat#Q10121MP; Invitrogen) in Neurobasal media on ice for 1 h. QD-NGF at a
final concentration of 0.2–0.5 nM was added to the axonal chamber for 3 h. To
minimize the diffusion of QD-NGF into the cell body compartment, media in the
cell body compartment was maintained at a higher level than that in the axon
compartment during incubation. Unbound QD-NGF was rinsed off before
imaging. Live-cell imaging of axonal transport of QD-NGF signals within the
proximal segments of axons was carried out using a Leica inverted microscope
with a ×100 oil objective lens. The scope was equipped with an environmental
chamber that was maintained at a constant temperature (37 °C) and CO2 (5%)
during live imaging. QD655 signal was visualized using a set of Texas red exci-
tation/emission cubes. Time-lapse images were acquired at the speed of 1 frame
per s for a total of 2 min and were captured using a charge-coupled devise
camera. Image acquisition was carried out blindly without knowing the genotypes
or treatments of the DRG cultures. Kymographs were generated from the time-
lapse image series using ImageJ using a previously written up macro47 (included
in Supplementary Software 1). Transport parameters (instantaneous velocity and
pause duration) were analyzed as described previously47, 48. Briefly, instantaneous
velocity was obtained by measuring the fastest moving part of a clear trajectory of
each non-stationary QD-NGF-bearing endosome. The distance and angle
obtained were then used to calculate the velocity according to the imaging setting.
Pause duration was obtained in a similar manner by measuring the non-moving
part of a clear trajectory of each non-stationary QD-NGF-bearing endosome. The
distance obtained was then used to calculate the pause duration according to the
imaging setting. Statistical analysis of the datasets was performed using Graphpad
Prism 5.1 with two-tailed unpaired Student’s t-test.

Hindlimb extension assay. The extent of hindlimb extension of mice was
observed by suspending mice via the tail. A score of 2.0 corresponds to a normal
extension reflex in hindlimbs with splaying of toes. A score of 1 corresponds to
clench of hindlimbs to the body with partial splaying of toes. A score of 0 corre-
sponds to clasping hindlimbs with curled toes. A score of 1.5 or 0.5 corresponded
to behaviors between 2 and 1, or between 1 and 0, respectively. Three sequential
tests were performed with 5 s intervals for each mouse.

Rotarod test. To acclimate them to the apparatus, the mice were initially placed on
the stationary rod (0 r.p.m.). This was followed by a training session with a rotation
speed at 1 r.p.m. for 3 min or until a fall occurred. For testing, the rotation of the
rotarod was accelerated from 0 r.p.m. with an accelerating rate (0.1 r.p.m. per s).
The latency of each mouse to fall was monitored for three consecutive trials and the
intra-trial interval for each animal was about 15 min. The average time of three
trials was calculated and used to measure motor performance.

Footprint test. Blue ink was applied to the hind paws of each mouse, which was
then placed at the entrance of a narrow channel (10 cm × 80 cm × 25 cm) with the
floor covered with white paper. The top of the channel was covered by tissue paper
and the home cage of the mice was placed at the end of the channel to attract the
mice to walk through the channel while leaving its footprints on the paper. Stride
length was assessed by measuring the average distances of at least three consecutive
steps.

Statistics. All graphs and data generated in this study were analyzed using
GraphPad Prism 5.1 Software (MacKiev), Origin (OriginLab), or Excel (Micro-
soft). We did not use statistical methods to predetermine sample sizes, but our
sample sizes are comparable to those generally found in the field. Two-tailed
unpaired Student’s t-tests were used to measure differences from at least three
independent replicates and no data points were excluded from the analyses for
any reason. The normality of the data was determined by D’Agostino–Pearson
omnibus test and Shapiro–Wilk normality test, and the F test has been performed
to compare the variances of the data from the groups that are being statistically
compared.

Data availability. All relevant data are available from the corresponding author
upon reasonable request.
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