111 research outputs found

    Long-range ballistic propagation of carriers in methylammonium lead iodide perovskite thin films

    Get PDF
    © 2019, The Author(s), under exclusive licence to Springer Nature Limited. The performance of semiconductor devices is fundamentally governed by charge-carrier dynamics within the active materials1–6. Although advances have been made towards understanding these dynamics under steady-state conditions, the importance of non-equilibrium phenomena and their effect on device performances remains elusive7,8. In fact, the ballistic propagation of carriers is generally considered to not contribute to the mechanism of photovoltaics (PVs) and light-emitting diodes, as scattering rapidly disrupts such processes after carrier generation via photon absorption or electric injection9. Here we characterize the spatiotemporal dynamics of carriers immediately after photon absorption in methylammonium lead iodide perovskite films using femtosecond transient absorption microscopy (fs-TAM) with a 10 fs temporal resolution and 10 nm spatial precision. We found that non-equilibrium carriers propagate ballistically over 150 nm within 20 fs of photon absorption. Our results suggest that in a typical perovskite PV device operating under standard conditions, a large fraction of carriers can reach the charge collection layers ballistically. The ballistic transport distance appears to be limited by energetic disorder within the materials, probably due to disorder-induced scattering. This provides a direct route towards optimization of the ballistic transport distance via improvements in materials and by minimizing the energetic disorder. Our observations reveal an unexplored regime of carrier transport in perovskites, which could have important consequences for device performance

    Underground testing : name-altering practices as probes in electronic music

    Get PDF
    Name-altering practices are common in many creative fields – pen names in literature, stage names in the performing arts, aliases in music. More than just reflecting artistic habits or responding to the need for distinctive brands, these practices can also serve as test devices to probe, validate, and guide the artists’ active participation in a cultural movement. At the same time, they constitute a powerful probe to negotiate the boundaries of a subculture, especially when its features are threatened by appropriation from the mass-oriented culture. Drawing evidence from electronic music, a field where name-altering practices proliferate, we outline dynamics of pseudonymity, polyonymy, and anonymity that surround the use of aliases. We argue that name-altering practices are both a tool artists use to probe the creative environment and a device to recursively put one’s creative participation to the test. In the context of creative subcultures, name-altering practices constitute a subtle but effective form of underground testing

    Long-range ballistic propagation of carriers in methylammonium lead iodide perovskite thin films

    Get PDF
    © 2019, The Author(s), under exclusive licence to Springer Nature Limited. The performance of semiconductor devices is fundamentally governed by charge-carrier dynamics within the active materials1–6. Although advances have been made towards understanding these dynamics under steady-state conditions, the importance of non-equilibrium phenomena and their effect on device performances remains elusive7,8. In fact, the ballistic propagation of carriers is generally considered to not contribute to the mechanism of photovoltaics (PVs) and light-emitting diodes, as scattering rapidly disrupts such processes after carrier generation via photon absorption or electric injection9. Here we characterize the spatiotemporal dynamics of carriers immediately after photon absorption in methylammonium lead iodide perovskite films using femtosecond transient absorption microscopy (fs-TAM) with a 10 fs temporal resolution and 10 nm spatial precision. We found that non-equilibrium carriers propagate ballistically over 150 nm within 20 fs of photon absorption. Our results suggest that in a typical perovskite PV device operating under standard conditions, a large fraction of carriers can reach the charge collection layers ballistically. The ballistic transport distance appears to be limited by energetic disorder within the materials, probably due to disorder-induced scattering. This provides a direct route towards optimization of the ballistic transport distance via improvements in materials and by minimizing the energetic disorder. Our observations reveal an unexplored regime of carrier transport in perovskites, which could have important consequences for device performance

    Ultrafast tracking of exciton and charge carrier transport in optoelectronic materials on the nanometer scale

    No full text
    We present a novel optical transient absorption and reflection microscope based on a diffraction-limited pump pulse in combination with a wide-field probe pulse, for the spatio-temporal investigation of ultrafast population transport in thin films. The microscope achieves a temporal resolution down to 12 fs and simultaneously provides sub-10 nm spatial accuracy. We demonstrate the capabilities of the microscope by revealing an ultrafast excited-state exciton population transport of up to 32 nm in a thin film of pentacene and by tracking the carrier motion in p-doped silicon. The use of few-cycle optical excitation pulses enables impulsive stimulated Raman micro-spectroscopy, which is used for in-situ verification of the chemical identity in the 100 - 2000 cm-1 spectral window. Our methodology bridges the gap between optical microscopy and spectroscopy allowing for the study of ultrafast transport properties down to the nanometer length scale

    Ultrafast tracking of exciton and charge carrier transport in optoelectronic materials on the nanometer scale

    No full text
    We present a novel optical transient absorption and reflection microscope based on a diffraction-limited pump pulse in combination with a wide-field probe pulse, for the spatio-temporal investigation of ultrafast population transport in thin films. The microscope achieves a temporal resolution down to 12 fs and simultaneously provides sub-10 nm spatial accuracy. We demonstrate the capabilities of the microscope by revealing an ultrafast excited-state exciton population transport of up to 32 nm in a thin film of pentacene and by tracking the carrier motion in p-doped silicon. The use of few-cycle optical excitation pulses enables impulsive stimulated Raman micro-spectroscopy, which is used for in-situ verification of the chemical identity in the 100 - 2000 cm-1 spectral window. Our methodology bridges the gap between optical microscopy and spectroscopy allowing for the study of ultrafast transport properties down to the nanometer length scale
    corecore