315 research outputs found

    SEARCH AND PURCHASE IN INFORMATION-OVERLOADED RETAIL ELECTRONIC MARKETPLACE: DOES PRICE AND REPUTATIOIN MATTER?

    Get PDF
    This study explores buyers\u27 search and purchase behavior in an information-overloaded retail Electronic Marketplace (EMP). Two instrumental variables, i.e. number of visitors and number of sales for an item, are used to represent buyers\u27 search and purchase behavior. Price and reputation, two of the most frequently researched independent variables in EMP studies, are considered. The relationships between the two IVs and the two DVs are verified when transaction items are of search-type and of experience-type. This study is conducted using field data collected from Taobao (the most dominant retail EMP in China). It is found that reputation has consistent positive relationships with two DVs. Price has negative effects on two DVs. However, it might have no impacts in the case of experience-type items. Conclusively, in information overloaded EMP, reputation always matters in influencing buyers\u27 search and purchase behavior, while price only matters in the case of search-type items

    Self‐potential ambient noise and spectral relationship with urbanization, seismicity, and strain rate revealed via the Taiwan Geoelectric Monitoring Network

    Get PDF
    AbstractGeoelectric self‐potential (SP) signals are sensitive to natural and anthropogenic factors. The SP spectral characteristics under the different factors in Taiwan were investigated, and the SP spectral scalings were correlated with urbanization level, seismicity, and crustal deformation. The ambient SP noise models were first established by estimating the probability density functions of the spectrograms at each frequency. The effects of the natural and anthropogenic factors on the SP signals are understood by comparing the SP noise models under various conditions, such as precipitation, urbanization, and electric trains. Results show that the SP signals in areas of high industrialization and human activity and areas close to train stations behave as white noises and exhibit a distinct spectral ripple at frequencies around 1 Hz. On the other hand, the SP spectral power law parameters, Gutenberg‐Richter b values, and dilation strain rates were estimated by using the SP, earthquake catalog, and GPS data, respectively, during 2012–2017. By investigating the correlations of the SP spectral parameters with the Gutenberg‐Richter b value, dilation strain rates, and urbanization level, the SP optimal frequency band is found between 0.006 and 1 Hz due to the high correlation between the SP and seismicity data and between the SP and dilation data and the low correlation between the SP and urbanization data. Hence, this study may help the filtering and screening of the SP data and facilitate the understanding of the mechano‐electric behavior in the crust

    Structured LDPC codes with low error floor based on PEG Tanner graphs

    Get PDF
    Abstract-Progressive edge-growth (PEG) algorithm was proven to be a simple and effective approach to design good LDPC codes. However, the Tanner graph constructed by PEG algorithm is non-structured which leads the positions of 's of the corresponding parity check matrix fully random. In this paper, we propose a general method based on PEG algorithm to construct structured Tanner graphs. These hardware-oriented LDPC codes can reduce the VLSI implementation complexity. Similar to PEG method, our CP-PEG approach can be used to construct both regular and irregular Tanner graphs with flexible parameters. For the consideration of encoding complexity and error floor, the modifications of proposed algorithm are discussed. Simulation results show that our codes, in terms of bit error rate (BER) or packet error rate (PER), outperform other PEG-based LDPC codes and are better than the codes in IEEE 802.16e

    Optically Defined Modal Sensors Incorporating Spiropyran-Doped Liquid Crystals with Piezoelectric Sensors

    Get PDF
    We integrated a piezoelectric sensing layer lamina containing liquid crystals (LC) and spiropyran (SP) in a LC/SP mixture to create an optically reconfigurable modal sensor for a cantilever beam. The impedance of this LC/SP lamina was decreased by UV irradiation which constituted the underlying mechanism to modulate the voltage externally applied to the piezoelectric actuating layer. Illuminating a specific pattern onto the LC/SP lamina provided us with a way to spatially modulate the piezoelectric vibration signal. We showed that if an UV illuminated pattern matches the strain distribution of a specific mode, a piezoelectric modal sensor can be created. Since UV illumination can be changed in situ in real-time, our results confirm for the first time since the inception of smart sensors, that an optically tailored modal sensor can be created. Some potential applications of this type of sensor include energy harvesting devices, bio-chips, vibration sensing and actuating devices

    KCNN2 polymorphisms and cardiac tachyarrhythmias

    Get PDF
    Potassium calcium-activated channel subfamily N member 2 (KCNN2) encodes an integral membrane protein that forms small-conductance calcium-activated potassium (SK) channels. Recent studies in animal models show that SK channels are important in atrial and ventricular repolarization and arrhythmogenesis. However, the importance of SK channels in human arrhythmia remains unclear. The purpose of the present study was to test the association between genetic polymorphism of the SK2 channel and the occurrence of cardiac tachyarrhythmias in humans. We enrolled 327 Han Chinese, including 72 with clinically significant ventricular tachyarrhythmias (VTa) who had a history of aborted sudden cardiac death (SCD) or unexplained syncope, 98 with a history of atrial fibrillation (AF), and 144 normal controls. We genotyped 12 representative tag single nucleotide polymorphisms (SNPs) across a 141-kb genetic region containing the KCNN2 gene; these captured the full haplotype information. The rs13184658 and rs10076582 variants of KCNN2 were associated with VTa in both the additive and dominant models (odds ratio [OR] 2.89, 95% confidence interval [CI] = 1.505-5.545, P = 0.001; and OR 2.55, 95% CI = 1.428-4.566, P = 0.002, respectively). After adjustment for potential risk factors, the association remained significant. The population attributable risks of these 2 variants of VTa were 17.3% and 10.6%, respectively. One variant (rs13184658) showed weak but significant association with AF in a dominant model (OR 1.91, CI = 1.025-3.570], P = 0.042). There was a significant association between the KCNN2 variants and clinically significant VTa. These findings suggest an association between KCNN2 and VTa; it also appears that KCNN2 variants may be adjunctive markers for risk stratification in patients susceptible to SCD

    Biomechanical comparison of pedicle screw fixation strength among three different screw trajectories using single vertebrae and one-level functional spinal unit

    Get PDF
    Three key factors are responsible for the biomechanical performance of pedicle screw fixation: screw mechanical characteristics, bone quality and insertion techniques. To the best of the authors’ knowledge, no study has directly compared the biomechanical performance among three trajectories, i.e., the traditional trajectory (TT), modified trajectory (MT) and cortical bone trajectory (CBT), in a porcine model. This study compared the pullout strength and insertion torque of three trajectory methods in single vertebrae, the pullout strength and fixation stiffness including flexion, extension, and lateral bending in a one-level instrumented functional spinal unit (FSU) that mimics the in vivo configuration were clarified. A total of 18 single vertebrae and 18 FSUs were randomly assigned into three screw insertion methods (n = 6 in each trajectory group). In the TT group, the screw converged from its entry point, passed completely inside the pedicle, was parallel to the superior endplate, was located in the superior third of the vertebral body and reached to at least the anterior third of the vertebral body. In the MT group, the convergent angle was similar to that of the TT method but directed caudally to the anterior inferior margin of the vertebral body. The results of insertion torque and pullout strength in single vertebrae were analyzed; in addition, the stiffness and pullout strength in the one-level FSU were also investigated. This study demonstrated that, in single vertebrae, the insertion torque was significantly higher in CBT groups than in TT and MT groups (p < 0.05). The maximal pullout strength was significantly higher in MT groups than in TT and CBT groups (p < 0.05). There was no significant difference in stiffness in the three motions among all groups. The maximal pullout strength in FSUs of MT and CBT groups were significantly higher than the TT groups (p < 0.05). We concluded that either MT or CBT provides better biomechanical performance than TT in single vertebrae or FSUs. The lack of significance of stiffness in FSUs among three methods suggested that MT or CBT could be a reasonable alternative to TT if the traditional trajectory was not feasible
    • 

    corecore