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Abstract 

Geoelectric self-potential (SP) signals are sensitive to natural and anthropogenic factors. 

The SP spectral characteristics under the different factors in Taiwan were investigated and the 

SP spectral scalings were correlated with urbanization level, seismicity, and crustal 

deformation. The ambient SP noise models were first established by estimating the 

probability density functions of the spectrograms at each frequency. The effects of the natural 

and anthropogenic factors on the SP signals are understood by comparing the SP noise 

models under various conditions, such as precipitation, urbanization, and electric trains. 

Results show that the SP signals in areas of high industrialization and human activity and 

areas close to train stations behave as white noises and exhibit a distinct spectral ripple at 

frequencies around 1 Hz. On the other hand, the SP spectral power-law parameters, 

Gutenberg-Richter (GR) b values, and dilation strain rates were estimated by using the SP, 

earthquake catalog, and GPS data, respectively, during 2012‒2017. By investigating the 

correlations of the SP spectral parameters with the GR b value, dilation strain rates, and 

urbanization level, the SP optimal frequency band is found between 0.006 and 1 Hz due to 

the high correlation between the SP and seismicity data and between the SP and dilation data 

and the low correlation between the SP and urbanization data. Hence, this study may help the 

filtering and screening of the SP data and facilitate the understanding of the mechano-electric 

behavior in the crust. 

 

Plain Language Summary 

Self-potential is a naturally electric potential difference beneath the Earth’s surface, 

measured between any two points on the ground or in boreholes. The self-potential signals 

are sensitive to natural factors, such as ionospheric disturbance, solar wind, and tidal forces, 

and to artificial factors, such as electric trains, factories, and power pipelines. Hence, the 

investigation of the background noises is critical. The self-potential noise models were 
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established by estimating the probability density functions of the daily power spectral 

densities. We compared the noise models under several conditions, such as urbanization, 

electric trains, and rainfalls. We found that the noise models behave as white noises in areas 

of high industrialization and human activity. Furthermore, we also estimated the self-potential 

power-law parameters, seismic b values, and dilation strain rates. We then studied 

correlations of the self-potential power-law parameters with the urbanization levels, b values, 

and dilation strain rates. We found out the frequency-dependent correlations of the spectral 

scalings with the other parameters and determined that the self-potential signals with a high 

signal-to-noise ratio in the frequency band of 0.006–1 Hz. Understanding such correlations 

may understand the feature of the mechano-electric behavior in the crust and facilitate the 

development of a seismic-electric theory. 

 

Keywords: 

Self-potential, ambient noise model, urbanization level, Gutenberg-Richter b value, dilation 

strain rate. 

  



 

©2019 American Geophysical Union. All rights reserved. 

1 Introduction 

Self-potential (SP) is a naturally electric potential difference beneath the Earth’s surface, 

measured between any two points on the ground or in boreholes. The SP signals occur in 

nature when electrolytes with different concentrations of ions come into galvanic contact with 

each other or where groundwater flows go through a capillary or a porous medium due to a 

hydraulic gradient [Revil & Jardani, 2013]. In recent decades, the SP method has been 

becoming an important component in geophysical surveys on the areas of groundwater flow 

[Jardani et al., 2006; Mao et al., 2015; Sill, 1983], dam seepage monitoring [Al-Saigh et al., 

1994; Ikard et al., 2014; Panthulu et al., 2001], volcanic monitoring [Aizawa et al., 2005; 

Corwin & Hoover, 1979; Kuwano et al., 2015], and earthquake precursor [Chen & Chen, 

2016; Chen et al., 2017; Corwin & Morrison, 1977; Ramıŕez-Rojas et al., 2004]. However, 

the SP signals are sensitive to anthropogenic factors, such as electric trains, factories, and 

power pipelines [Fraser‐Smith & Coates, 1978; Harada et al., 2004; Ishikawa et al., 2007; 

Oettinger et al., 2001; Saito et al., 2011; Takahashi et al., 2007; Viljanen & Pirjola, 1994], 

and to natural factors, such as solar-terrestrial interactions, groundwater flows, and ocean 

tides [Fujii et al., 1995; Huang & Liu, 2006; Jardani et al., 2006; Lanzerotti et al., 2000]. 

Hence, understanding the SP background noises is critical and helpful to improve the data 

quality. 

The SP signals clearly exhibit daily variations, which are affected by tidal forces and 

human activities [Huang & Liu, 2006; Szarka, 1988; Uyeda et al., 2002]. Hence, it is 

important to first understand the daily background noises, called ambient noises hereafter. 

However, it is extremely challenging to quantify the degree of human activities in certain 

areas, particularly for the degree of electricity usage, which is directly associated with the SP 

signals. Moreover, the SP signals are reported to behave as 1/𝑓𝛽  noises [Balasco et al., 

2002; Ramírez-Rojas et al., 2011]. The Earth’s crust is regarded as a self-organized critical 

system [Rundle et al., 2000 and references cited therein], exhibiting the fractal behaviors in 
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mechanical and electromagnetic ways [Chen et al., 2006; Potirakis et al., 2017; Sornette & 

Sornette, 1990]. Furthermore, crustal deformations are also suggested to affect the fractal 

behaviors [Öncel & Wilson, 2004]. Hence, it is attracting to study the relationships among 

the strain rates and scaling factors of the SP and seismicity data. 

In this paper, we took Taiwan as an example and investigated correlations among the 

datasets of the SP, seismicity, strain rates, and urbanization. At present, the anthropogenic 

factor was provided with a detailed spatial distribution in Taiwan only for the urbanization 

data [Huang et al., 2018], which may relate to human activities regarding electricity usage. 

Taiwan is located at the collision boundary between the Eurasian plate and the Philippine Sea 

plate at a convergence rate of 82 mm/yr (Yu et al., 1997); hence, Taiwan has complicated 

geological features, active orogeny, and frequent earthquakes and provides multiple datasets 

concerning the SP, earthquake catalog, GPS (Global Positioning System), and urbanization 

data. 

Since 2012, the Geoelectric Monitoring System (GEMS) has been established in Taiwan. 

It includes 20 SP stations about 50 km apart (Figure 1). One of the main purposes of the 

GEMS network is studying correlations between SP signals and crustal activities [Chen & 

Chen, 2016; Chen et al., 2017; Jiang et al., 2019; Telesca et al., 2014]. For instance, the SP 

anomalies were found to be associated with ML ≥ 5 earthquakes by using skewness and 

kurtosis and were attempted to create an earthquake forecasting algorithm [Chen & Chen, 

2016; Chen et al., 2017]. Moreover, associations between the time dynamics of the SP signals 

and crustal deformation processes were investigated by using the Fisher-Shannon method 

[Telesca et al., 2014]. Obvious relations were found between the information properties of the 

SP signals and the differential strain intensity along the Taiwan orogen. However, due to a 

lack of ambient noise studies, it still remains contentious whether the GEMS network in 

Taiwan is producing meaningful SP data or this database is sufficient to study anomalous 

internally sourced fields. 
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In this study, we have characterized the SP 1/𝑓𝛽  noises by investigating the continuous 

data for 6 years from the GEMS network. There are two main objectives: (1) to establish the 

ambient SP noise models for each station by estimating the probability density functions of 

the spectrograms at each frequency [Berger et al., 2004; Marzorati & Bindi, 2006; McNamara 

& Buland, 2004]; and (2) to investigate the correlations of the SP spectral power-law models 

with the urbanization level, seismicity, and dilation strain rate. We then discussed the 

behaviors of the SP noise models under several conditions, such as urbanization, electric 

trains, precipitation. Also, we investigated the frequency dependence of the correlations of 

the SP spectral power-law parameters with the urbanization level, seismicity, and dilation 

strain rate. To our knowledge, despite a few studies concerning long-term electromagnetic 

data [Han et al., 2016; Huang, 2011; Xu et al., 2013], no research has focused on the ambient 

noises and spectral scaling correlations of SP data from a network with densely distributed, 

similarly equipped, and long-term recording stations. Consequently, this study may contribute 

to enrich the understanding of mechano-electric features in a complex environment like 

Taiwan. 

 

2 Data 

2.1 Geoelectric monitoring system and self-potential data 

Since 2012, the GEMS network has been progressively installed in Taiwan and has been 

working by 20 SP stations uniformly distributed with a spacing of about 50 km (Figure 1). 

The SP data at each station are continuously recorded at a sampling rate of 15 samples per 

second and with a GPS time correction. The SP signals are the passive potential differences 

between two dipoles oriented in the North-South (NS) and East-West (EW) directions. The 

non-polarized electrodes (Pb‒PbCl2) of each dipole were buried at a depth of 1 m to avoid 

ground disturbances (e.g., surface temperature, precipitation, and human activity) and 

connected with the local telephone cable to each recording office. Table 1 lists the name, 
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location, and start date of each station. The information on the GEMS network can also be 

referred to a study [Chen & Chen, 2016]. 

In this paper, we analyzed the SP data for all components and stations measured from 

the onset time until 31 December 2017. Based on the 6-year data, we developed robust noise 

models for each SP station. To improve our understanding of the geoelectric features, we 

analyzed the daytime (09:00-14:00 Local Time, denoted as DT) and the nighttime 

(00:00-05:00 Local Time, denoted as NT) data, and compared them with the whole day 

(00:00-24:00 Local Time, denoted as WD) data. In contrast to the DT data, the effects of 

electric trains and most human activities can be well avoided for the NT data. 

 

2.2 Urbanization data 

The SP signals are sensitive to electric trains, factories, power pipelines, and other 

human activities concerning electricity usage [Fraser‐Smith & Coates, 1978; Harada et al., 

2004; Ishikawa et al., 2007; Oettinger et al., 2001; Saito et al., 2011; Takahashi et al., 2007]. 

However, it is exceptionally challenging to quantify those above-mentioned anthropogenic 

factors in certain regions. In this study, we employed the urbanization level estimated by 

Huang et al. [2018], who provided detailed spatial information on the degree of urbanization 

in Taiwan. 

Urbanization is the process of the population moving from rural areas to urban areas, 

which is mainly proportional to the degree of human activities. Huang et al. [2018] studied 

the degree of urbanization in Taiwan townships and used data for the 2010 population, 

housing census, and so on. Four indicators in their study were introduced including “number 

of residents,” “the percentage of people working in secondary industries,” “the percentage of 

people working in tertiary industries,” and “population density.” Finally, the urbanization 

level was divided into five levels. Level 1 is the lowest, which had the lowest population size 

and density but the highest primary industry percentage. Level 5 is the highest, which had the 
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highest population size, population density, and the highest tertiary industry percentage. 

Detailed analyses and categories of the urbanization levels can be referred to the study 

[Huang et al., 2018]. The spatial distribution of the urbanization levels is mapped in Figure 1. 

The urbanization level of each SP station is also summarized in Table 1. 

However, the urbanization level here is neither time-dependent during 2012–2017 nor 

directly related to the degree of electricity usage. In this study, we made two assumptions for 

comparisons between the urbanization and SP data. First, according to the Taiwan 

government reports (https://www.stat.gov.tw/sitemap.asp), the social change and economic 

growth have been becoming slow for the past decade; hence, we considered that the 

urbanization data for 2010 can be compared with the average parameters estimated from the 

datasets (e.g., SP, seismicity, and GPS) during 2012–2017. Second, we assumed that the 

urbanization level is proportional to the degree of the factors regarding electric trains, 

factories, and human activities regarding electricity usage. Therefore, the relationship 

between the electricity-related factors and SP data can be understood to some extent by 

studying the relationship between the urbanization and SP data. 

 

 

2.3 Earthquake data 

    From 1973 to 1992, the Taiwan Telemetered Seismographic Network (TTSN) [Wang, 

1989] was operated by the Institute of Earth Sciences, Academia Sinica. The TTSN consists 

of 24 stations, each equipped with a vertical high-gain and analog velocity seismometer. In 

1992, the TTSN was merged into the Taiwan Seismic Network operated by the Central 

Weather Bureau (CWB) to form the CWB Seismic Network (CWBSN) [Shin, 1992; Shin et 

al., 2013]. The CWBSN is composed of 72 stations, each equipped with three-component 

digital velocity seismometers [Wu et al., 2008] and provided high-quality digital earthquake 

data that is recorded in both high- and low-gain formats. Since 2010, the CWBSN has again 

https://www.stat.gov.tw/sitemap.asp
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been upgraded: the seismograms are currently digitized at 24 bits, and the number of stations 

has increased with more than 100 now widely installed in Taiwan [Chang et al., 2012; Hsiao 

et al., 2011]. The types of seismic instruments include short-period seismographs, 

accelerometers, and broadband seismometers. Therefore, the source parameters of an 

earthquake can be estimated more accurately and the completeness of magnitude (Mc) in this 

network can reach down to 1.5 [Chen et al., 2013]. 

That Earth’s crust was observed to exhibit fractal behaviors in mechanical and 

electromagnetic ways [Chen et al., 2006; Potirakis et al., 2017]. Hence, we paid attention to 

study the relationship between the scaling factors of the seismicity and SP data. In this study, 

we employed the Taiwanese earthquake catalog during 2012–2017 with ML ≥ 0 in longitudes 

119.5‒122.5°E and latitudes 21.5‒25.5°N. We then estimated the parameters of the 

Gutenberg-Richter (GR) law (Gutenberg & Richter, 1944; Rabinovitch et al., 2001), such as b 

and Mc values, by using the catalog selected within a 50-km radius for each SP station. 

 

 

2.4 Global positioning system and data acquisition and processing 

    Crustal deformations affect the fractal behaviors in the crustal systems [Öncel & Wilson, 

2004]. Hence, it is necessary to study the influence of deformation rates on the SP and GR 

scaling factors. In this study, we estimated dilation strain rates by using GPS data. Until 2019, 

the GPSLAB (http://gps.earth.sinica.edu.tw) has been managed more than 500 GPS stations 

operating in Taiwan. The GPS data were employed to perform numerous studies regarding 

crustal deformations and plate motions in Taiwan [Takahashi et al., 2019; Yu et al., 1997, 

1999; Yu & Kuo, 2001]. 

Here, we analyzed the GPS data during 2012‒2017 as the same observed period as the SP and 

earthquake data. The GPS data were downloaded from the GPSLAB and processed with the 

Jet Propulsion Laboratory’s (JPL’s) GIPSY-OASIS software [Bertiger et al., 2010; Zumberge 

http://gps.earth.sinica.edu.tw/
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et al., 1997]. This software corrects the effects of the JPL’s final orbit and clock information, 

the antenna phase center calibration, the first (and higher) order ionospheric bias, the 

tropospheric delays, the ocean loading, and so forth. These positions were computed under a 

new International GNSS Service (i.e., IGS08) reference frame [Rebischung et al., 2012]. 

Then, we estimated velocities and velocity uncertainties from the GPS coordinate time series 

with the Median Interannual Difference Adjusted for Skewness (MIDAS) algorithm [Blewitt 

et al., 2016]. This approach computes the median of slopes between all data pairs separated 

by one year, which is a variation of the Theil-Sen nonparametric median trend estimator [Sen, 

1968; Theil, 1992]. The difference of pairs separated by one year mitigates the effect of 

annual periodicity rather than other transient signals such as different periodicities and 

co-seismic and post-seismic deformations. This technique has been shown to be more robust 

than the traditional least square with seasonal fitting [Blewitt et al., 2016] against common 

error sources such as step discontinuities, outliers, and seasonality. 

3 Methodology 

The SP signals are affected by daily variations, such as solar-terrestrial interactions, 

electric trains, and human activities regarding electricity usage. In order to understand the 

influences of natural or artificial sources on the SP signals, it is important to investigate the 

ambient SP noises, which is the daily background noises. In this study, we first established 

the ambient noise models for each SP station by computing the probability density functions 

(PDFs) on a set of the power spectral densities (PSDs) of selected SP signals. The 

methodology presented here was mainly referred to and modified from earlier studies [Berger 

et al., 2004; Marzorati & Bindi, 2006; McNamara & Buland, 2004], which applied the 

method for evaluating ambient earth noises. Hence, comparisons of the SP noise models can 

be carried out under several conditions, such as the urbanization level, precipitation, and 

electric trains (see Section 4). 

On the other hand, the Earth’s crust is a complex self-organizing system, which is 
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composed of multiple physical processes that interact between individuals to give rise to the 

overall state of the Earth as an entirety [Rundle et al., 2000; Turcotte, 1992]. Hence, the 

fractal behaviors in seismicity and electromagnetic data can be observed [Chen et al., 2006; 

Potirakis et al., 2017]. Also, the fractal behaviors are affected by crustal deformations [Öncel 

& Wilson, 2004]. Hence, in the second part, we analyzed and investigated the features of the 

SP 1/𝑓𝛽  noises, GR b values, and dilation strain rates. The processing steps and estimating 

methods are detailed as follows. 

 

3.1 Self-potential data processing 

The SP signals each day for every component and station were selected into one 

analyzed segment considering three kinds of time spans: (i) the whole day (00:00–24:00 

Local Time) as the WD data, (ii) the daytime (09:00–14:00 Local Time) as the DT data, and 

(iii) the nighttime (00:00–05:00 Local Time) as the NT data. The effects of electric trains and 

most human activities can be well avoided for the NT data as a quiet reference. Figure 2a 

illustrates the original SP signals on 1 January 2016 for both components at CHCH. The SP 

amplitudes usually vary from tens to hundreds of mV/km with some extremely spiky signals. 

To better analyze the background noises, we thus discarded the data points with values 

greater than the 99.5th percentile and smaller than the 0.5th percentile in each segment. After 

such first data screening, if the percentage of missing data is less than 30% of one analyzed 

segment (at which the PSDs can still be well estimated by the Lomb-Scargle method 

[Munteanu et al., 2016], see Section 3.2), then the unevenly spaced time series are further 

processed. Next, we calculated the mean value and linear trend of each segment and 

subtracted them from that segment. The total number of the remaining segments for later 

estimating the PSDs using different time-spanned data at each station is listed in Table 1. 

 

3.2 Power spectral density 
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The PSDs of the segments for different time-spanned data were estimated by the Welch 

method [Seats et al., 2012; Welch, 1967] and the Lomb-Scargle method [Lomb, 1976; 

Munteanu et al., 2016; Scargle, 1982]. In each segment, we calculated the PSD in a moving 

window length of 10000 sec by using the Lomb-Scargle method with a shifting length of 

1000 sec. Then, we computed a modified periodogram by averaging the estimated 

Lomb-Scargle PSDs in the segment. This averaged periodogram with overlapped time 

windows tends to reduce the variance for a single periodogram. This moving window is 

windowed by the Tukey window with a cosine taper of 25% width to decrease sidelobe 

leakage effects and to enhance the signal-to-noise ratio [Bloomfield, 2004]. The window 

length has 10000 sec so that the longest resolvable period is roughly 1000 sec (10-3 Hz) 

following an empirical relationship that the reliable longest period is about one-tenth of the 

calculating window [McNamara & Buland, 2004]. The frequencies are evenly spaced in a 

logarithmic scale with a step of 0.02 between 10-3 and 100.86 (≅ 7.24) Hz. We then applied 

one-third octave smoothing to the PSD of each segment for reducing measurement noise 

[Hatziantoniou & Mourjopoulos, 2000; O’Haver, 2016; Tylka et al., 2017]. 

Let’s take the SP time series shown in Fig. 2a as an example. Figure 2b demonstrates the 

PSD using the WD data for the NS component estimated by the above-mentioned method. 

We observed that the PSD between 0.001 and 0.1 Hz is approximately linear in a log-log 

scale. The linear fitting of the PSD was then estimated by using the least-squares regression 

(see Section 3.4). Furthermore, we estimated the daily PSDs using the different time-spanned 

data for all components and stations. Figure 3 illustrates the spectrogram at CHCH from its 

start date to 31 December 2017. 

 

3.3 Probability density function 

To investigate the ambient SP noises, we at each frequency calculated the PDF of the 

PSDs for the different time-spanned data. We grouped the PSD values into bins of 0.1 
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log10(mV2/km2/Hz) wide, ranging from -5 to 7, obtained histogram, and then divided by the 

total number of PSDs. Figures 4a and 4b demonstrate the PDFs for the WD data at 

frequencies of 0.003, 0.03, 0.3, and 3 Hz at CHCH. We observed that for both components 

the PDFs at lower frequencies, particularly when f = 0.003 Hz, are usually skewed to the high 

power densities. This implies that most of affecting factors on the SP signals seriously disturb 

the low-frequency signals. Figures 4c and 4d further demonstrate the probabilistic power 

spectral densities (PPSDs), which represent the PDFs for all frequencies in one plot. We also 

estimated and plotted the 5th percentile (P5), mode (PM), 95th percentile (P95) at each 

frequency, which are referred to as the ambient SP noise models hereafter. In this case, the 

percentages around the 𝑃𝑀(𝑓) are greater than 12% for both components. Moreover, the 

distance of 𝑃95(𝑓) − 𝑃5(𝑓) decreases with the frequency. This suggests that the SP signals 

at the low frequencies (f < 0.1 Hz) are more sensitive than those at the high frequencies (f > 

0.1 Hz). 

    Figures 5a and 5b show the PPSD images using the DT data at CHCH for the NS and 

EW components, respectively. In contrast, Figs. 5c and 5d show the PPSD images using the 

NT data for the NS and EW components, respectively. The percentages on the 𝑃𝑀(𝑓) for the 

DT and NT data for both components are all greater than 12%. On the other hand, the 

distances of 𝑃95(𝑓) − 𝑃5(𝑓) with f < 0.1 Hz for the NT data are smaller than those for the 

DT data. The day-night difference in this case logically suggests less interference of artificial 

noises during the nighttime. The distances of 𝑃95(𝑓) − 𝑃5(𝑓) with f > 10-1 Hz for the NT 

data for the EW component are wider than those for the NS component. This might be due to 

the induced telluric currents by the interference of the Earth’s magnetic field or the telluric 

current circulation from land to sea [Simpson & Bahr, 2005; Zhang et al., 2019]. 

 

3.4 Scaling exponent of self-potential 𝟏/𝒇𝜷 noise 

The time dynamics of observational signals in the crustal system may exhibit correlation 
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structures and self-similarity in mechanical [Chen et al., 2006; Sarlis et al., 2015; Turcotte, 

1999] or electromagnetic ways [Contoyiannis et al., 2004; Eftaxias et al., 2003; Potirakis et 

al., 2017; Rong et al., 2012; Varotsos et al., 2003], which generally indicate the inherent 

memory of the system generating those signals. Such correlation can be revealed by the 

power-law behavior of the PSD: 

𝑃(𝑓) ∝ 1/𝑓𝛽.              (1) 

The scaling exponent β is usually observed in the range 0 ≤ β ≤ 3 and is generally estimated 

as the slope of the line fitting in the least-squares sense of Eq. (1) presented in log-log scales: 

𝑙𝑜𝑔10(𝑃) = 𝛼 − 𝛽 ∙ 𝑙𝑜𝑔10(𝑓),          (2) 

where α is a constant. 

As a rule of thumb, a candidate power law should meaningfully exhibit a linear relationship 

in a log-log scale over approximately two orders of magnitude in both axes [Stumpf & Porter, 

2012]. Hence, we selected a moving frequency window with 2 logarithmic orders with a 

shifting step of 0.2 logarithmic orders. For example, we fitted Eq. (2) to the PSDs between 

10-3 and 10-1 Hz, between 10-2.8 and 10-0.8 Hz, and so on, until fitting between 10-1.2 and 100.8 

Hz. In this study, we attempted to understand whether there is a frequency-dependent 

relationship of the SP data with the urbanization data, GR b value, and dilation strain rate. 

Using the WD data by fitting Eq. (2) to the PSDs between 0.001 and 0.1 Hz, Fig. 6 illustrates 

at CHCH the daily variations of the estimated β values and the coefficient of determination 

(R2) that quantifies how good the regression line fits the data. We observed that most of the β 

values for both components are in the range of 1‒2 with R2 > 0.8. 

Further, we calculated the mean values and standard deviations of the daily estimated β 

and α values with R2 > 0.8 for each SP station during 2012–2017. Table 2 shows the mean 

values of β and α (denoted as �̅� and �̅�) and the standard deviations of them (denoted as 𝜎�̅� 

and 𝜎�̅�) for all components and stations by using the different time-spanned data. In this case 

of fitting the PSDs between 0.001 and 0.1 Hz, Figs. 7a and 7b also illustrate the spatial 
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distributions of the �̅� values using the NT data (denoted as �̅�𝑁𝑇 ) for the NS and EW 

components, respectively. We observed that, for the different time-spanned data and both 

components, the �̅� values for most of the SP stations range from 1 to 1.5 with 𝜎�̅� from 0.2 

to 0.4. This indicates that the ambient SP noises are often characterized by the flicker-noise 

and Brownian-noise processes [Guzmán-Vargas et al., 2009; Ramıŕez-Rojas et al., 2004]. On 

the other hand, the �̅� values for most of the SP stations range from -2 to 0 with 𝜎�̅� from 0.5 

to 1.5. However, the scientific community was less interested in the discussion of the α values. 

In this paper, we attempted to discuss the related issue regarding the α values in the SP noises 

with the urbanization level, GR b value, and dilation strain rate. 

 

3.5 Gutenberg-Richter b value 

The frequency-magnitude distribution of seismicity is generally characterized  by a 

power-law behavior [Gutenberg & Richter, 1944], also called the Gutenberg-Richter (GR) 

law: 

𝑙𝑜𝑔10[𝑁(𝑚 ≥ 𝑀𝑐)] = 𝑎 − 𝑏𝑚,          (3) 

where 𝑁(𝑚 ≥ 𝑀𝑐) is the number of earthquakes with magnitude (m) larger than or equal to 

the completeness of magnitude (Mc), b is a scaling parameter, and a is a constant. Earthquake 

catalogs are shown to be incomplete at small magnitudes due to a detection threshold of 

seismic instruments and networks [Rydelek & Sacks, 1989]; hence, assessing the Mc value is 

critical. In this study, we estimated the b and Mc values by using the Clauset method [Clauset 

et al., 2009; Virkar & Clauset, 2014], which optimizes the lower data cutoff (i.e., 

completeness of magnitude in seismology) by minimizing the Kolmogorov-Smirnov distance 

between the empirical cumulative probability function (CDF) obtained from the data and the 

analytical CDF obtained via the GR-law parameters. The detailed application of the Clauset 

method can also be referred to a study [Li et al., 2015]. 

In this study, the b value was estimated by the earthquake catalog selected within a 



 

©2019 American Geophysical Union. All rights reserved. 

50-km radius of each SP station, which is also the interstation distance. Table 1 shows the b 

value corresponding to each station. The errors in the b values were also calculated by using a 

bootstrap approach [Schorlemmer et al., 2003]. In this approach, we randomly resampled a 

dataset of the same number of events on the selected catalog for each station and used the 

Clauset method to estimate the b value of the resampled dataset. We repeated this procedure 

1000 times and took the mean value and standard deviation to represent the confidence in b 

(denoted as �̅� and 𝜎�̅�). As Figure 7c shows the spatial distribution of the estimated �̅� 

values, which are close to 1 for most areas. However, the middle and western sides of Taiwan 

are characterized by smaller �̅� values (below 0.9) than the eastern side. Furthermore, the 

northern sides are featured by higher �̅� values (above 1.1); particularly, the �̅� value (b = 

1.74 ± 0.29) is maximum at SHRL located on the Tatun Volcano Group, in agreement that 

volcanic areas are usually featured by higher b values [Pu et al., 2014; Wiemer & McNutt, 

1997; Wyss et al., 1997]. 

 

3.6 Dilation strain rate 

The dilation strain rate (D) is the first invariant of the strain rate tensor (𝜀�̇�𝑗), which 

equals the trace of 𝜀�̇�𝑗: 

𝐷 = 𝜀�̇�𝑥 + 𝜀�̇�𝑦 + 𝜀�̇�𝑧.            (4) 

Since the GPS does not provide reliable vertical velocities [Schmidt et al., 2003; Wing & 

Frank, 2011], we considered the areal dilation rate, which is the sum of the maximum and 

minimum principal strain rates (𝜀1̇ and 𝜀2̇, respectively): 

𝐷 = 𝜀1̇ + 𝜀2̇.              (5) 

The positive and negative D values correspond, respectively, to extension or elongation and 

contraction or shortening. We derived strain rates from the GPS velocities based on the VISR 

(Velocity Interpolation to Strain Rates) method described by Shen et al. [2015]. In this 

method, we meshed the Taiwan area and set a grid size of 0.05 × 0.05 degree. The local strain 
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rate at each node of the grid was estimated from local geodetic measurements using Gaussian 

and Voronoi cell weightings to automatically reduce the contribution of far stations from the 

node within the entire network. A uniform strain rate field was assumed at each node of the 

grid and a weighted least squares inversion was performed over strain component solutions 

and their covariance for the unknowns of translation, rotation, and strain. Next, we estimated 

the derived quantities of the strain rates such as the principal strain rates and dilation strain 

rates. 

We then selected the nodes of the grid within a 20-km radius of each SP station and 

averaged the dilation strain rates of the selected nodes. Table 1 lists the mean values and 

standard deviations of the dilation strain rates (denoted as �̅� and 𝜎�̅�). Figure 7d shows the 

spatial distribution of the �̅� values. The large positive �̅� values (above 0.2 μstrain/yr) 

feature around TOCH on account of the back-arc rifting or extension in the Okinawa Trough 

[Liu et al., 2016; Sibuet et al., 1987]. On the other hand, the large negative �̅� values (below 

-1.6 μstrain/yr) appear at YULI and RUEY due to the strong convergence of the Luzon arc 

[Mouthereau et al., 2009; S. Yu et al., 1999]. 

 

4 Results 

4.1 Ambient self-potential noise models 

In this section, we paid attention to the comparisons of the SP noise models (P5, PM, and 

P95) under different conditions, such as the urbanization level, electric trains (associated with 

the day-night difference), and precipitation. 

To understand the influence of the urbanization level on the SP data, we compared the 

SP noise models for the WD data at KAOH with those at HUAL, as shown in Fig. 8. Station 

KAOH (U = 4) is situated in highly industrialized areas in Taiwan and close to the area of U 

= 5, while HUAL (U = 1) is located in desolate mountain areas as a silent spatial reference. 

We observed that the SP noise models for both components at KAOH are flatter than those at 
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HUAL, which are close to white noises. Moreover, distinct ripples appear in the noise models 

at KAOH, particularly at frequencies of 0.01 and 1 Hz. These results indicate the serious 

interference by human activities at KAOH, the highly industrialized area. 

    Second, to understand the effect of the electric trains on the SP data, we compared the 

SP noise models for the DT data with those for the NT data at HERM and HUAL, as shown 

in Fig. 9. Station HERM is close to a busy train station with a distance of 5 km, whereas there 

is no train effect at HUAL in remote mountains. Additionally, the DT data is spanned during 

the working hours of 09:00–14:00 Local Time; contrarily, the NT data is spanned during 

00:00–05:00 Local Time, when the train effect can be totally avoided, as a quiet temporal 

reference. We observed that, at HERM and for both components, the SP noise models when f 

> 10-0.5 Hz during the nighttime are 0.5 log10(mV2/km2/Hz) smaller than those during the 

daytime. Exceptionally, the P95 models around f ≅ 1 Hz feature a distinct ripple and have the 

same order for both DT and NT data. Moreover, the distances of 𝑃95(𝑓) − 𝑃5(𝑓) with f < 

0.01 Hz during the nighttime are smaller than those during the daytime. As the quiet 

reference at HUAL, the SP noise models are overall similar for both the DT and NT data. 

Only the P95 model for the NS component during the nighttime is smaller than that during the 

daytime. 

    Third, to understand the impact of precipitation on the SP data, we compared the SP 

noise models at the quiet station HUAL and using the WD data, which were re-estimated by 

the proposed methodology under the conditions of precipitation equal to 0 mm/day, greater 

than 50 mm/day, and greater than 100 mm/day. Figure 10a shows the daily time series of 

precipitation at HUAL, which displays the seasonal variations that the precipitation amounts 

are highly focused in summer times. Figures 7b and 7c show the ambient noise models with 

precipitation equal to 0 mm/day and greater than 50 mm/day for the NS and EW components, 

respectively. Here the SP noise models with precipitation equal to 0 mm/day are served as a 

dry reference. Figures 7d and 7e also show the SP noise models with precipitation equal to 0 
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mm/day and greater than 100 mm/day for the NS and EW components, respectively. We 

observed that the PM models are almost the same for the three precipitation conditions. 

However, the P5 model for the NS component with precipitation > 100 mm/day has larger 

PSDs for all frequencies than that with precipitation > 50 mm/day, which has also larger 

PSDs than that with precipitation of 0 mm/day. Moreover, the P95 model for the EW 

component with precipitation > 100 mm/day has larger PSD when f > 10-0.7 Hz than that with 

precipitation > 50 mm/day, which has also larger PSDs than that with precipitation of 0 

mm/day. Overall, whether the precipitation is considered, the ambient SP noise models show 

little difference. The reason may be that long dipole lengths are used (1‒3 km) in the GEMS 

network. While the precipitation can cause a prominent flow direction in small scales and the 

strong effect of the precipitation on the SP signals in short dipole lengths such as tens of 

meters, the GEMS data look immune to rainfalls. 

 

4.2 Correlations among self-potential power-law parameters, urbanization level, 

Gutenberg-Richter b value, and dilation strain rate 

In this section, we focused on analyzing spatial correlations (symbolized as ρ hereafter) 

among the urbanization level (U), GR �̅� value, dilation strain rate (�̅�), and SP power-law 

parameters (�̅� and �̅�) using the different time-spanned data and for both components. By the 

way, we simply denoted the correlation between U and �̅� as 𝜌𝑈_�̅�, for instance. 

Figure 11 illustrates the correlation and corresponding p-value matrices when the �̅� and 

�̅� values were estimated in the frequency band of 0.001–0.1 Hz. The correlation matrices for 

the NS and EW components are imaged as Figs. 11a and 11c, respectively; correspondingly, 

the p-value matrices for the NS and EW components are imaged as Figs. 11b and 11d, 

respectively. We observed that the absolutes of correlations with |𝜌| > 0.1 have significance 

with p ≤ 0.1. The correlations of 𝜌�̅�𝑊𝐷_�̅�𝐷𝑇, 𝜌�̅�𝑊𝐷_�̅�𝑁𝑇 , and 𝜌�̅�𝐷𝑇_�̅�𝑁𝑇 are highly correlated, 

and so are those of 𝜌�̅�𝑊𝐷_�̅�𝐷𝑇, 𝜌�̅�𝑊𝐷_�̅�𝑁𝑇 , and 𝜌�̅�𝐷𝑇_�̅�𝑁𝑇 . This logically indicates that the SP 
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power-law models at each station have similar patterns whether they are estimated using the 

WD, DT, or NT data. No spatial correlation exists between U and �̅� (𝜌𝑈_�̅�  = 0.1), which is 

reasonable that the crustal deformations are mainly caused by plate motions and mantle 

convection [Pysklywec & Beaumont, 2004; S. Yu et al., 1999]. However, a moderate 

correlation seems to exist between U and �̅� (𝜌𝑈_�̅� = 0.39) (see Section 5). Moreover, a 

moderate correlation might also exist between �̅� and �̅� (𝜌�̅�_�̅� = 0.41) in agreement with 

the finding that seismicity is more common at positive strain rate values [Hauksson, 2011; 

Nakamura & Kinjo, 2018]. 

We now concentrated on the correlations of the SP power-law parameters with the 

urbanization level, GR �̅� value, and dilation strain rate. In this case of �̅� and �̅� estimated 

between 0.001 and 0.1 Hz, we observed that the correlations between U and �̅� for the 

different time-spanned data are featured by relatively high negative values (-0.65 to -0.47) for 

both components. This means that larger U values correspond to smaller �̅� values, that is 

reminiscent of the case of KAOH (Fig. 8). We considered that the SP signals are seriously 

dominated by white noises when an SP station is located in highly urbanized areas. However, 

in this case, the correlations of �̅� and �̅� with �̅� and �̅� almost do not exist (|𝜌| ≤ 0.3). 

To further understand the influence of the urbanization level, GR �̅� value, and dilation 

strain rate on the frequency-dependent SP power-law parameters, we then analyzed the 

correlations of U, �̅� and �̅� with �̅� and �̅� estimated in different frequency bands (see 

Section 3.4). Figure 12 shows the correlations of U, �̅� and �̅� with �̅� estimated in different 

frequency bands for both components using the different time-spanned data. We observed 

that, no matter what frequency bands are involved, most of them are not correlated (|𝜌| ≤

0.3). Exceptionally, the correlations between U and �̅�𝐷𝑇 at some frequency bands can be 

featured by large negative values (below -3). This again implies that high human activities 

during the daytime indeed seriously affect the SP signals. On the other hand, Fig. 13 similarly 

shows the correlations of U, �̅� and �̅� with �̅� estimated in different frequency bands. We 
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observed that, at certain frequency bands, moderate correlations of U, �̅� and �̅� with �̅� can 

reach values of |𝜌| > 0.3. This result indicates that the correlations are frequency-dependent. 

Compared those curves, the optimal frequency bands (10-2.2 to 1 Hz) can be found due to 

higher positive correlations of 𝜌�̅�_�̅� and 𝜌�̅�_�̅� and less correlation of 𝜌𝑈_�̅�. 

 

5 Discussion and conclusions 

The effects of anthropogenic factors (e.g., electric trains, factories, and power pipelines) 

are reported to disturb electromagnetic signals [Fraser‐Smith & Coates, 1978; Ishikawa et al., 

2007; Saito et al., 2011; Viljanen & Pirjola, 1994]. However, it is difficult to quantify such 

anthropogenic factors in certain areas. Here we choose the detailed spatial distribution of the 

urbanization level in Taiwan estimated by Huang et al. [2018] on behalf of the anthropogenic 

factors. In this paper, we demonstrated the comparisons of the ambient SP noise models 

under different artificial factors, such as the urbanization level and electric trains. As Fig. 8 

shows, the comparison for the urbanization level suggests that the SP signals are 

characterized by white noise processes in areas of high industrialization or human activity. 

On the other hand, in Fig. 9, the day-night difference, which mostly responds to the train 

effect, between the SP noise models indicates that the SP signals with f > 10-0.5 (≅ 0.32) Hz 

and f < 0.01 Hz are mainly affected by the train noises during the daytime. Hence, installing 

one SP station in the above-mentioned areas should be avoided. However, due to site 

limitations, the SP signals are sometimes inevitably disturbed by the anthropogenic factors. 

Logically, a further and critical step is to develop a noise reduction method or apply 

developed methods to distinguish noises from signals, such as remote reference [Larsen, 1997; 

Oettinger et al., 2001] and interstation transfer function [Harada et al., 2004; Takahashi et al., 

2007]. The ambient SP noise models proposed here play an important role to examine 

whether noises are successfully extracted from signals after using noise reduction methods. 

For example, we would expect that the SP noise models become flicker-noise or 
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Brownian-noise patterns and the spectral ripples in the noise models disappear if one applied 

the interstation transfer function approach to the SP signals at KAOH. At present, this 

remains an open question and will be our future work. 

The most important topic is to study the frequency dependence of the correlations of the 

SP power-law parameters (α and β) with the urbanization level (U), GR b value, and dilation 

strain rate (D). As Fig. 12 shows, the α values are not correlated with the U, b, and D values. 

However, the α represents the energy level of the analyzed signals; hence, we believed that 

the α values in the SP power-law models should be related to the geological settings or 

hydrological conditions, which can affect the electromagnetic signals [Befus et al., 2014; 

Rizzo et al., 2004]. On the other hand, the correlations of β with U, b, and D show the 

frequency dependence, and the optimal frequency band is found between 10-2.2 (≅ 0.006) and 

1 Hz, at which there are relatively high correlations between β and b and between β and D 

and relatively low correlation between β and U. The Earth’s crust, as a complex dynamic 

system, exhibits the fractal behaviors in the mechanical and electromagnetic ways in the same 

time [Rabinovitch et al., 2001]; hence, the fractals in the seismicity and SP data logically 

have a positive correlation, which reaches a maximum of 0.6 in this study. Moreover, the 

correlation between β and D reaches a maximum of 0.4. As Öncel & Wilson [2004] pointed 

out, the crustal deformations can affect the fractal behaviors in the crust. Therefore, there are 

positive correlations among β, b, and D in this study. However, it is still unsolved that the 

effects of the anthropogenic and crustal factors on the SP signals between 0.006 and 1 Hz are 

better performed. 

In the investigation of the spatial correlation matrix, interestingly, the positive 

correlation between the urbanization level and GR b value seems to exist. The urbanization 

level is mainly related to the degree of population, which is related to the surface mass 

loading. Hence, the high urbanization level represents large surface mass loading. It has been 

reported that the surface mass loading may affect the seismicity, such as snow load [Heki, 
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2003] and reservoir mass [Mandal et al., 2005; Simpson, 1976]. Additionally, the coverage 

and detection of the seismic network should be considered. The seismometers in Taiwan are 

densely distributed in cities (high urbanization level) rather than in mountain areas (low 

urbanization level) [Shin et al., 2013]; hence, more small earthquakes in highly urbanized 

areas may be recorded and the GR b values are then affected to increase. However, there is no 

rigorous analysis and inference in this paper; hence, it is still arguable that earthquakes may 

be triggered by the population mass loading or caused due to the detection capability of the 

seismic network. 

In conclusion, we have investigated the ambient SP noise models under different 

conditions, such as the urbanization level, electric trains, and precipitation. Understanding the 

patterns of the ambient SP noises is helpful to maintain the original SP stations or deploy new 

stations. As a typical example, the SP signals at KAOH are atrocious. Second, we have 

investigated the spatial correlation matrix and its frequency dependence of the SP power-law 

parameters with the urbanization level, GR b value, and dilation strain rate. The 

determination of the optimal frequency band allows us to filter and screen the SP signals and 

improve the quality of the SP analyses. Consequently, this paper may be conducive to 

understand the seismo-electric theory and mechano-electric features in the crust. 
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Table 1. Properties of the SP stations on the GEMS network. The first three columns are the 

name, location, and the start date of a station, respectively. The fourth column is the number 

of the segments for estimating the PSDs using the WD, DT, and NT data. The fifth column is 

the urbanization level (U) estimated by Huang et al. (2018). The sixth column is the slope of 

the Gutenberg-Richter distribution (b) estimated by the catalog selected during 2012‒2017 

and within a 50-km radius of each SP station. The seventh column is the dilation strain rate 

(D) in μstrain/yr derived from the GPS data during 2012‒2017. The b and D values are 

represented by mean within one standard deviation. 

 

Station 

Name 

Location (°E, °N) 

Start Date 

(yyyy-mm-dd) 

Number of Analyzed Segments 

(WD, DT, NT) 

U b D (μstrain/yr) 

SHRL 121.56, 25.16 2012-05-02 2012, 2025, 2025 4 1.74±0.29 0.0783±0.0580 

KUOL 121.14, 24.96 2012-01-01 2133, 2144, 2147 3* 1.22±0.05 -0.0614±0.0507 

TOCH 121.81, 24.84 2013-08-29 1356, 1365, 1367 3 1.14±0.03 0.5416±0.0395 

HUAL 121.37, 24.67 2012-01-17 1710, 1983, 1690 1 1.07±0.02 0.0025±0.0301 

ENAN 121.79, 24.48 2012-02-15 1996, 2024, 2020 3 0.94±0.02 0.2333±0.0520 

DAHU 120.90, 24.41 2012-02-07 2117, 2125, 2125 1 1.05±0.03 -0.1885±0.0348 

LISH 121.25, 24.25 2012-11-07 1717, 1744, 1731 1 0.92±0.03 0.0586±0.0321 

SHCH 121.63, 24.12 2012-04-23 1997, 2009, 2004 3 0.90±0.01 -0.3252±0.0593 

HERM 120.50, 24.11 2012-02-09 2055, 2071, 2066 2 0.99±0.04 -0.0984±0.0481 

PULI 120.98, 23.92 2012-03-01 2022, 2027, 2026 2* 0.88±0.04 -0.4940±0.0416 

FENL 121.41, 23.72 2012-04-23 1953, 1968, 1970 1 0.80±0.01 -0.7178±0.0429 

SIHU 120.23, 23.64 2012-02-08 1958, 2001, 1991 1 1.05±0.04 -0.1375±0.0490 

DABA 120.75, 23.45 2013-02-01 1772, 1772, 1773 3 0.90±0.01 -0.4715±0.0446 

YULI 121.32, 23.32 2012-04-23 2024, 2037, 2035 3 0.85±0.01 -1.6821±0.0506 

CHCH 120.16, 23.22 2012-03-01 2019, 2031, 2025 2 0.99±0.03 -0.2191±0.0396 

LIOQ 120.66, 23.03 2012-07-20 1943, 1945, 1941 1 0.88±0.01 -0.2529±0.0543 

RUEY 121.16, 22.97 2012-04-23 2044, 2052, 2052 1 0.86±0.01 -1.7620±0.0621 

KAOH 120.29, 22.66 2012-02-23 2067, 2073, 2069 4 0.95±0.03 -0.0944±0.0658 

WANL 120.59, 22.59 2012-12-20 1681, 1703, 1702 3 0.94±0.02 -0.2709±0.0410 

FENG 120.70, 22.20 2012-12-20 1400, 1528, 1493 1 0.98±0.03 0.4615±0.0347 

*Note that (1) the urbanization level at KUOL is set U = 3 due to its proximity between areas 
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of U = 2 and U = 4; (2) similarly, we set U = 2 at PULI between areas of U = 1 and U = 3. 
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Table 2. Mean values and standard deviations of the SP power-law parameters estimated by 

fitting Eq. (2) to the PSDs between 0.001 and 0.1 Hz by using the WD, DT, and NT data for 

the NS and EW components. 

 

Station 

Name 

βWD (NS; EW) βDT (NS; EW) βNT (NS; EW) αWD (NS; EW) αDT (NS; EW) αNT (NS; EW) 

SHRL 1.14±0.51; 1.20±0.38 1.33±0.48; 1.20±0.44 1.19±0.42; 1.33±0.38 -0.92±1.09; -0.17±0.99 -1.42±1.12; -0.64±1.14 -1.42±0.92; -0.73±0.97 

KUOL 1.22±0.31; 1.26±0.28 1.16±0.30; 1.23±0.27 1.22±0.33; 1.27±0.32 -1.32±0.91; -1.80±1.31 -1.27±0.93; -1.82±1.28 -1.72±1.09; -2.24±1.33 

TOCH 1.15±0.30; 1.17±0.21 1.20±0.32; 1.17±0.23 1.28±0.33; 1.24±0.27 -0.97±1.02; -0.34±0.93 -1.05±1.10; -0.30±1.04 -2.01±1.10; -1.41±0.80 

HUAL 1.58±0.21; 1.41±0.32 1.52±0.22; 1.44±0.25 1.49±0.29; 1.38±0.34  0.21±0.93; -0.15±1.14  0.35±1.23; -0.48±0.90  0.07±0.99; -0.27±1.32 

ENAN 1.02±0.28; 0.87±0.26 1.20±0.27; 1.15±0.28 1.08±0.35; 1.01±0.33 -0.18±0.61;  0.67±0.66 -0.81±0.55; -0.46±0.65 -0.61±0.96; -0.35±1.31 

DAHU 1.46±0.20; 1.45±0.23 1.40±0.24; 1.38±0.26 1.54±0.23; 1.58±0.29 -0.50±0.85; -0.33±1.01 -0.46±0.98; -0.24±1.06 -1.00±1.02; -0.95±1.18 

LISH 1.36±0.21; 1.31±0.25 1.44±0.26; 1.43±0.26 1.29±0.27; 1.24±0.30 -0.91±0.68; -0.26±0.72 -1.25±1.21; -0.75±1.28 -1.06±0.88; -0.44±1.08 

SHCH 1.10±0.18; 1.07±0.23 1.13±0.23; 1.04±0.27 0.96±0.22; 0.97±0.25 -0.89±0.86; -1.00±0.77 -1.11±0.96; -1.15±0.93 -0.87±0.86; -1.02±0.72 

HERM 1.06±0.23; 1.05±0.24 0.98±0.27; 1.01±0.27 0.93±0.22; 0.95±0.24 -0.60±0.35; -0.14±0.37 -0.72±0.37; -0.40±0.39 -0.55±0.46; -0.10±0.53 

PULI 1.22±0.22; 1.15±0.27 1.16±0.27; 1.19±0.32 1.17±0.23; 1.14±0.23 -0.51±0.62; -0.89±0.65 -0.98±0.53; -1.51±0.56 -0.63±0.72; -1.12±0.80 

FENL 1.36±0.26; 1.15±0.33 1.30±0.28; 1.06±0.33 1.26±0.33; 1.11±0.33 -0.06±0.42;  0.19±0.78 -0.02±0.49;  0.04±0.70 -0.55±0.54; -0.12±0.98 

SIHU 1.15±0.28; 1.14±0.27 1.24±0.30; 1.24±0.30 1.12±0.29; 1.12±0.29 -0.82±1.88; -0.21±1.25 -1.52±2.09; -0.92±1.52 -0.71±1.96; -0.20±1.38 

DABA 1.22±0.23; 1.24±0.27 1.19±0.31; 1.21±0.31 1.13±0.26; 1.23±0.33 -0.34±0.46; -0.39±0.38 -0.46±0.51; -0.38±0.43 -0.44±0.58; -0.72±0.48 

YULI 1.18±0.27; 0.93±0.37 1.19±0.29; 1.06±0.38 1.11±0.25; 1.03±0.31 -1.50±0.55; -0.71±0.67 -1.52±0.60; -1.05±0.75 -2.03±0.50; -1.40±0.57 

CHCH 1.48±0.26; 1.42±0.31 1.50±0.27; 1.46±0.27 1.32±0.25; 1.38±0.31 -2.50±0.43; -2.51±0.59 -2.86±0.53; -2.83±0.63 -2.52±0.54; -2.79±0.52 

LIOQ 1.35±0.24; 1.36±0.23 1.39±0.26; 1.40±0.27 1.33±0.23; 1.32±0.24 -0.22±0.69; -0.54±0.75 -0.40±0.75; -0.79±0.81 -0.33±0.74; -0.67±0.74 

RUEY 1.17±0.23; 1.49±0.23 1.10±0.25; 1.59±0.28 1.15±0.24; 1.44±0.29 -0.61±0.36; -1.32±0.54 -0.80±0.49; -1.70±0.73 -0.77±0.40; -1.53±0.52 

KAOH 0.80±0.26; 0.87±0.25 0.96±0.37; 0.92±0.33 0.96±0.21; 0.88±0.20 -0.97±0.51; -1.20±0.53 -1.09±1.53; -1.27±1.23 -2.25±0.48; -2.42±0.41 

WANL 1.28±0.36; 1.13±0.29 1.41±0.36; 1.43±0.33 1.12±0.30; 1.09±0.26 -1.34±0.55; -1.49±0.62 -1.92±0.67; -2.16±0.71 -1.67±0.72; -1.76±0.88 

FENG 1.76±0.20; 1.37±0.24 1.86±0.21; 1.48±0.26 1.64±0.28; 1.36±0.30 -2.53±0.37; -2.15±0.52 -2.78±0.44; -2.54±0.56 -2.53±0.49; -2.31±0.61 
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Figure 1. Maps of the SP stations on the GEMS network (red triangles) and of the 

urbanization levels of the Taiwan townships (blue shading) as estimated by Huang et al. 

(2018). 

  



 

©2019 American Geophysical Union. All rights reserved. 

 

Figure 2. (a) SP time series on 1 January 2016 at CHCH for the NS (blue) and EW (red) 

components. The full-time scale represents the whole day (00:00–24:00 Local Time, WD), 

the black dashed line represents the nighttime (00:00–05:00 Local Time, NT), and the black 

solid line represents the daytime (09:00–14:00 Local Time, DT). (b) Illustration of the power 

spectral density estimated using the WD data for the NS component in (a) and the fitting of 

Eq. (2) (see Section 3.4) to the PSDs between 0.001 and 0.1 Hz by using the least-squares 

regression in a log-log scale.  
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Figure 3. Spectrogram of the SP signals using the WD data at CHCH for the NS (top) and 

EW (bottom) components. The white areas correspond to discarded SP data or data missings. 
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Figure 4. Probability density functions (PDFs) at CHCH using the WD data at frequencies of 

0.003, 0.03, 0.3, and 3 Hz for the (a) NS and (b) EW components. Probability power spectral 

densities (PPSDs) at CHCH using the WD data for the (c) NS and (d) EW components. The 

PPSD shows the PDF at each frequency in one plot. The P95, PM, and P5 models represent the 

95th percentile, mode, and 5th percentile of the PDFs. 
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Figure 5. Probability power spectral densities (PPSDs) at CHCH using the DT data for the (a) 

NS and (b) EW components. PPSDs at CHCH using the NT data for the (c) NS and (d) EW 

components. 
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Figure 6. Time series of the spectral scaling of the SP 1/𝑓𝛽  noises (top) and coefficient of 

determination R2 (bottom) at CHCH for the WD data by fitting the PSDs between 0.001 and 

0.1 Hz. 
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Figure 7. Maps of the SP scalings �̅�𝑁𝑇  listed in Table 2 for the (a) NS and (b) EW 

components. Maps of (c) the GR �̅� values and (d) the dilation strain rates (�̅�) listed in Table 

1. 
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Figure 8. Ambient SP noise models (P5, PM, and P95) at KAOH (blue) and HUAL (red) using 

the WD data for the (a) NS and (b) EW components. 
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Figure 9. Ambient SP noise models (P5, PM, and P95) at HERM using the DT and NT data for 

the (a) NS and (b) EW components. Similarly, noise models at HUAL for the (c) NS and (d) 

EW components. 
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Figure 10. (a) Daily time series of the precipitation at HUAL during 2012–2017. Ambient SP 

noise models (P5, PM, and P95) when precipitation is 0 mm (blue) and greater than 50 mm (red) 

at HUAL using the WD data for the (a) NS and (b) EW components. Similarly, noise models 

when precipitation is 0 mm (blue) and greater than 100 mm (red) for the (a) NS and (b) EW 

components.  
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Figure 11. Correlation matrix among the urbanization level (U), GR �̅� value, dilation strain 

rate (�̅�) and the SP power-law parameters (�̅� and �̅�) estimated between 0.001 and 0.1 Hz, as 

an example, for the (a) NS and (b) EW components. Corresponding p-value matrices for the 

(a) NS and (b) EW components. There are three significance levels of 0.1, 0.05, and 0.001 for 

the color bar. 
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Figure 12. Correlations between U and �̅� estimated using the different time-spanned data at 

different frequency bands for the (a) NS and (b) EW components. Similarly, correlations 

between �̅� and �̅� for the (c) NS and (d) EW components and correlations between �̅� and 

�̅� for the (e) NS and (f) EW components. The frequency tick in a logarithmic scale here 

represents the frequency band between 10tick and 10tick+2 Hz (see Section 3.4).  
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Figure 13. Correlations between U and �̅� estimated using the different time-spanned data at 

different frequency bands for the (a) NS and (b) EW components. Similarly, correlations 

between �̅� and �̅� for the (c) NS and (d) EW components and correlations between �̅� and 

�̅� for the (e) NS and (f) EW components. The frequency tick in a logarithmic scale here 

represents the frequency band between 10tick and 10tick+2 Hz (see Section 3.4). 

 


