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Abstract

Geoelectric self-potential (SP) signals are sensitive to natural and anthropogenic factors.
The SP spectral characteristics under the different factors in Taiwan were investigated and the
SP_spectral scalings were correlated with urbanization level, seismicity, and crustal
deformation. The ambient SP noise models were first established by estimating the
probability density functions of the spectrograms at each frequency. The effects of the natural
and anthropogenic factors on the SP signals are understood by comparing the SP noise
models under various conditions, such as precipitation, urbanization, and electric trains.
Results show that the SP signals in areas of high industrialization and human activity and
areas close to train stations behave as white noises and exhibit a distinct spectral ripple at
frequencies around 1 Hz. On the other hand, the SP spectral power-law parameters,
Gutenberg-Richter (GR) b values, and dilation strain rates were estimated by using the SP,
earthquake catalog, and GPS data, respectively, during 2012-2017. By investigating the
correlations of the SP spectral parameters with the GR b value, dilation strain rates, and
urbanization level, the SP optimal frequency band is found between 0.006 and 1 Hz due to
the high correlation between the SP and seismicity data and between the SP and dilation data
and the low correlation between the SP and urbanization data. Hence, this study may help the
filtering and screening of the SP data and facilitate the understanding of the mechano-electric

behavior-in the crust.

Plain Language Summary

Self-potential is a naturally electric potential difference beneath the Earth’s surface,
measured between any two points on the ground or in boreholes. The self-potential signals
are sensitive to natural factors, such as ionospheric disturbance, solar wind, and tidal forces,
and to artificial factors, such as electric trains, factories, and power pipelines. Hence, the

investigation of the background noises is critical. The self-potential noise models were
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established by estimating the probability density functions of the daily power spectral
densities. We compared the noise models under several conditions, such as urbanization,
electric trains, and rainfalls. We found that the noise models behave as white noises in areas
of high industrialization and human activity. Furthermore, we also estimated the self-potential
power-law parameters, seismic b values, and dilation strain rates. We then studied
carrelations of the self-potential power-law parameters with the urbanization levels, b values,
and dilation strain rates. We found out the frequency-dependent correlations of the spectral
scalings with the other parameters and determined that the self-potential signals with a high
signal-to-noise ratio in the frequency band of 0.006-1 Hz. Understanding such correlations
may understand the feature of the mechano-electric behavior in the crust and facilitate the

development of a seismic-electric theory.
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strain rate.
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1 Introduction

Self-potential (SP) is a naturally electric potential difference beneath the Earth’s surface,
measured between any two points on the ground or in boreholes. The SP signals occur in
nature when electrolytes with different concentrations of ions come into galvanic contact with
each other or where groundwater flows go through a capillary or a porous medium due to a
hydraulic gradient [Revil & Jardani, 2013]. In recent decades, the SP method has been
becoming an important component in geophysical surveys on the areas of groundwater flow
[Jardani et al., 2006; Mao et al., 2015; Sill, 1983], dam seepage monitoring [Al-Saigh et al.,
1994; lkard et al., 2014; Panthulu et al., 2001], volcanic monitoring [Aizawa et al., 2005;
Corwin & Hoover, 1979; Kuwano et al., 2015], and earthquake precursor [Chen & Chen,
2016; Chen et al., 2017; Corwin & Morrison, 1977; Ramirez-Rojas et al., 2004]. However,
the SP signals are sensitive to anthropogenic factors, such as electric trains, factories, and
power pipelines [Fraser-Smith & Coates, 1978; Harada et al., 2004; Ishikawa et al., 2007;
Oettinger et al., 2001; Saito et al., 2011; Takahashi et al., 2007; Viljanen & Pirjola, 1994],
and to natural factors, such as solar-terrestrial interactions, groundwater flows, and ocean
tides [Fujii et al., 1995; Huang & Liu, 2006; Jardani et al., 2006; Lanzerotti et al., 2000].
Hence, understanding the SP background noises is critical and helpful to improve the data
quality.

The SP signals clearly exhibit daily variations, which are affected by tidal forces and
human activities [Huang & Liu, 2006; Szarka, 1988; Uyeda et al., 2002]. Hence, it is
important to first understand the daily background noises, called ambient noises hereafter.
However, it is extremely challenging to quantify the degree of human activities in certain
areas, particularly for the degree of electricity usage, which is directly associated with the SP
signals. Moreover, the SP signals are reported to behave as 1/f# noises [Balasco et al.,
2002; Ramirez-Rojas et al., 2011]. The Earth’s crust is regarded as a self-organized critical

system [Rundle et al., 2000 and references cited therein], exhibiting the fractal behaviors in
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mechanical and electromagnetic ways [Chen et al., 2006; Potirakis et al., 2017; Sornette &
Sornette, 1990]. Furthermore, crustal deformations are also suggested to affect the fractal
behaviors [Oncel & Wilson, 2004]. Hence, it is attracting to study the relationships among
the strain rates and scaling factors of the SP and seismicity data.

In this paper, we took Taiwan as an example and investigated correlations among the
datasets of the SP, seismicity, strain rates, and urbanization. At present, the anthropogenic
factor was provided with a detailed spatial distribution in Taiwan only for the urbanization
data [Huang et al., 2018], which may relate to human activities regarding electricity usage.
Taiwan is located at the collision boundary between the Eurasian plate and the Philippine Sea
plate at a convergence rate of 82 mm/yr (Yu et al., 1997); hence, Taiwan has complicated
geological features, active orogeny, and frequent earthquakes and provides multiple datasets
concerning the SP, earthquake catalog, GPS (Global Positioning System), and urbanization
data.

Since 2012, the Geoelectric Monitoring System (GEMS) has been established in Taiwan.
It includes 20 SP stations about 50 km apart (Figure 1). One of the main purposes of the
GEMS network is studying correlations between SP signals and crustal activities [Chen &
Chen, 2016; Chen et al., 2017; Jiang et al., 2019; Telesca et al., 2014]. For instance, the SP
anomalies were found to be associated with M. > 5 earthquakes by using skewness and
kurtosis and were attempted to create an earthquake forecasting algorithm [Chen & Chen,
2016; Chen et al., 2017]. Moreover, associations between the time dynamics of the SP signals
and crustal deformation processes were investigated by using the Fisher-Shannon method
[Telesca et al., 2014]. Obvious relations were found between the information properties of the
SP signals and the differential strain intensity along the Taiwan orogen. However, due to a
lack of ambient noise studies, it still remains contentious whether the GEMS network in
Taiwan is producing meaningful SP data or this database is sufficient to study anomalous

internally sourced fields.
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In this study, we have characterized the SP 1/f# noises by investigating the continuous
data for 6 years from the GEMS network. There are two main objectives: (1) to establish the
ambient SP noise models for each station by estimating the probability density functions of
the spectrograms at each frequency [Berger et al., 2004; Marzorati & Bindi, 2006; McNamara
& Buland, 2004]; and (2) to investigate the correlations of the SP spectral power-law models
with the urbanization level, seismicity, and dilation strain rate. We then discussed the
behaviors of the SP noise models under several conditions, such as urbanization, electric
trains, precipitation. Also, we investigated the frequency dependence of the correlations of
the SP spectral power-law parameters with the urbanization level, seismicity, and dilation
strain rate. To our knowledge, despite a few studies concerning long-term electromagnetic
data [Han et al., 2016; Huang, 2011; Xu et al., 2013], no research has focused on the ambient
noises and spectral scaling correlations of SP data from a network with densely distributed,
similarly equipped, and long-term recording stations. Consequently, this study may contribute
to enrich the understanding of mechano-electric features in a complex environment like

Taiwan.

2 Data
2.1 Geoelectric monitoring system and self-potential data

Since 2012, the GEMS network has been progressively installed in Taiwan and has been
working by 20 SP stations uniformly distributed with a spacing of about 50 km (Figure 1).
The SP data at each station are continuously recorded at a sampling rate of 15 samples per
second and with a GPS time correction. The SP signals are the passive potential differences
between two dipoles oriented in the North-South (NS) and East-West (EW) directions. The
non-polarized electrodes (Pb—PbCl,) of each dipole were buried at a depth of 1 m to avoid
ground disturbances (e.g., surface temperature, precipitation, and human activity) and

connected with the local telephone cable to each recording office. Table 1 lists the name,
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location, and start date of each station. The information on the GEMS network can also be
referred to a study [Chen & Chen, 2016].

In this paper, we analyzed the SP data for all components and stations measured from
the onset time until 31 December 2017. Based on the 6-year data, we developed robust noise
models for each SP station. To improve our understanding of the geoelectric features, we
analyzed the daytime (09:00-14:00 Local Time, denoted as DT) and the nighttime
(00:00-05:00 Local Time, denoted as NT) data, and compared them with the whole day
(00:00-24:00 Local Time, denoted as WD) data. In contrast to the DT data, the effects of

electric trains and most human activities can be well avoided for the NT data.

2.2 Urbanization data

The SP signals are sensitive to electric trains, factories, power pipelines, and other
human activities concerning electricity usage [Fraser-Smith & Coates, 1978; Harada et al.,
2004; Ishikawa et al., 2007; Oettinger et al., 2001; Saito et al., 2011; Takahashi et al., 2007].
However, it is exceptionally challenging to quantify those above-mentioned anthropogenic
factors in certain regions. In this study, we employed the urbanization level estimated by
Huang et al. [2018], who provided detailed spatial information on the degree of urbanization
in Taiwan.

Urbanization is the process of the population moving from rural areas to urban areas,
which is mainly proportional to the degree of human activities. Huang et al. [2018] studied
the degree of urbanization in Taiwan townships and used data for the 2010 population,

housing census, and so on. Four indicators in their study were introduced including “number

99 ¢e 29 ¢¢

of residents,” “the percentage of people working in secondary industries,” “the percentage of
people working in tertiary industries,” and “population density.” Finally, the urbanization
level was divided into five levels. Level 1 is the lowest, which had the lowest population size
and density but the highest primary industry percentage. Level 5 is the highest, which had the
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highest population size, population density, and the highest tertiary industry percentage.
Detailed analyses and categories of the urbanization levels can be referred to the study
[Huang et al., 2018]. The spatial distribution of the urbanization levels is mapped in Figure 1.
The urbanization level of each SP station is also summarized in Table 1.

However, the urbanization level here is neither time-dependent during 2012—-2017 nor
directly related to the degree of electricity usage. In this study, we made two assumptions for
comparisons between the urbanization and SP data. First, according to the Taiwan

government reports (https://www.stat.gov.tw/sitemap.asp), the social change and economic

growth have been becoming slow for the past decade; hence, we considered that the
urbanization data for 2010 can be compared with the average parameters estimated from the
datasets (e.g., SP, seismicity, and GPS) during 2012-2017. Second, we assumed that the
urbanization level is proportional to the degree of the factors regarding electric trains,
factories, and human activities regarding electricity usage. Therefore, the relationship
between the electricity-related factors and SP data can be understood to some extent by

studying the relationship between the urbanization and SP data.

2.3 Earthquake data

From 1973 to 1992, the Taiwan Telemetered Seismographic Network (TTSN) [Wang,
1989] was operated by the Institute of Earth Sciences, Academia Sinica. The TTSN consists
of 24 stations, each equipped with a vertical high-gain and analog velocity seismometer. In
1992, the TTSN was merged into the Taiwan Seismic Network operated by the Central
Weather Bureau (CWB) to form the CWB Seismic Network (CWBSN) [Shin, 1992; Shin et
al., 2013]. The CWBSN is composed of 72 stations, each equipped with three-component
digital velocity seismometers [Wu et al., 2008] and provided high-quality digital earthquake

data that is recorded in both high- and low-gain formats. Since 2010, the CWBSN has again
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been upgraded: the seismograms are currently digitized at 24 bits, and the number of stations
has increased with more than 100 now widely installed in Taiwan [Chang et al., 2012; Hsiao
et al., 2011]. The types of seismic instruments include short-period seismographs,
accelerometers, and broadband seismometers. Therefore, the source parameters of an
earthquake can be estimated more accurately and the completeness of magnitude (Mc) in this
network can reach down to 1.5 [Chen et al., 2013].

That Earth’s crust was observed to exhibit fractal behaviors in mechanical and
electromagnetic ways [Chen et al., 2006; Potirakis et al., 2017]. Hence, we paid attention to
study the relationship between the scaling factors of the seismicity and SP data. In this study;,
we employed the Taiwanese earthquake catalog during 2012—-2017 with M. > 0 in longitudes
119.5-122.5°E and latitudes 21.5-25.5°N. We then estimated the parameters of the
Gutenberg-Richter (GR) law (Gutenberg & Richter, 1944; Rabinovitch et al., 2001), such as b

and M. values, by using the catalog selected within a 50-km radius for each SP station.

2.4 Global positioning system and data acquisition and processing

Crustal deformations affect the fractal behaviors in the crustal systems [Oncel & Wilson,
2004]. Hence, it is necessary to study the influence of deformation rates on the SP and GR
scaling factors. In this study, we estimated dilation strain rates by using GPS data. Until 2019,

the GPSLAB (http://gps.earth.sinica.edu.tw) has been managed more than 500 GPS stations

operating in Taiwan. The GPS data were employed to perform numerous studies regarding
crustal deformations and plate motions in Taiwan [Takahashi et al., 2019; Yu et al., 1997,
1999; Yu & Kuo, 2001].

Here, we analyzed the GPS data during 2012-2017 as the same observed period as the SP and
earthquake data. The GPS data were downloaded from the GPSLAB and processed with the

Jet Propulsion Laboratory’s (JPL’s) GIPSY-OASIS software [Bertiger et al., 2010; Zumberge
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et al., 1997]. This software corrects the effects of the JPL’s final orbit and clock information,
the antenna phase center calibration, the first (and higher) order ionospheric bias, the
tropospheric delays, the ocean loading, and so forth. These positions were computed under a
new International GNSS Service (i.e., 1GS08) reference frame [Rebischung et al., 2012].
Then, we estimated velocities and velocity uncertainties from the GPS coordinate time series
with the Median Interannual Difference Adjusted for Skewness (MIDAS) algorithm [Blewitt
et al., 2016]. This approach computes the median of slopes between all data pairs separated
by one year, which is a variation of the Theil-Sen nonparametric median trend estimator [Sen,
1968; Theil, 1992]. The difference of pairs separated by one year mitigates the effect of
annual periodicity rather than other transient signals such as different periodicities and
co-seismic and post-seismic deformations. This technique has been shown to be more robust
than the traditional least square with seasonal fitting [Blewitt et al., 2016] against common
error sources such as step discontinuities, outliers, and seasonality.
3 Methodology

The SP signals are affected by daily variations, such as solar-terrestrial interactions,
electric trains, and human activities regarding electricity usage. In order to understand the
influences of natural or artificial sources on the SP signals, it is important to investigate the
ambient SP noises, which is the daily background noises. In this study, we first established
the ambient noise models for each SP station by computing the probability density functions
(PDFs) on a set of the power spectral densities (PSDs) of selected SP signals. The
methodology presented here was mainly referred to and modified from earlier studies [Berger
et al.,, 2004; Marzorati & Bindi, 2006; McNamara & Buland, 2004], which applied the
method for evaluating ambient earth noises. Hence, comparisons of the SP noise models can
be carried out under several conditions, such as the urbanization level, precipitation, and
electric trains (see Section 4).

On the other hand, the Earth’s crust is a complex self-organizing system, which is
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composed of multiple physical processes that interact between individuals to give rise to the
overall state of the Earth as an entirety [Rundle et al., 2000; Turcotte, 1992]. Hence, the
fractal behaviors in seismicity and electromagnetic data can be observed [Chen et al., 2006;
Potirakis et al., 2017]. Also, the fractal behaviors are affected by crustal deformations [Oncel
& Wilson, 2004]. Hence, in the second part, we analyzed and investigated the features of the
SP 1/f# noises, GR b values, and dilation strain rates. The processing steps and estimating

methods are detailed as follows.

3.1 Self-potential data processing

The SP signals each day for every component and station were selected into one
analyzed segment considering three kinds of time spans: (i) the whole day (00:00-24:00
Local Time) as the WD data, (ii) the daytime (09:00-14:00 Local Time) as the DT data, and
(iii) the nighttime (00:00-05:00 Local Time) as the NT data. The effects of electric trains and
most_human activities can be well avoided for the NT data as a quiet reference. Figure 2a
illustrates the original SP signals on 1 January 2016 for both components at CHCH. The SP
amplitudes usually vary from tens to hundreds of mV/km with some extremely spiky signals.
To better analyze the background noises, we thus discarded the data points with values
greater than the 99.5" percentile and smaller than the 0.5 percentile in each segment. After
such first data screening, if the percentage of missing data is less than 30% of one analyzed
segment (at which the PSDs can still be well estimated by the Lomb-Scargle method
[Munteanu et al., 2016], see Section 3.2), then the unevenly spaced time series are further
processed. Next, we calculated the mean value and linear trend of each segment and
subtracted them from that segment. The total number of the remaining segments for later

estimating the PSDs using different time-spanned data at each station is listed in Table 1.

3.2 Power spectral density
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The PSDs of the segments for different time-spanned data were estimated by the Welch
method [Seats et al., 2012; Welch, 1967] and the Lomb-Scargle method [Lomb, 1976;
Munteanu et al., 2016; Scargle, 1982]. In each segment, we calculated the PSD in a moving
window length of 10000 sec by using the Lomb-Scargle method with a shifting length of
1000 sec. Then, we computed a modified periodogram by averaging the estimated
Lomb-Scargle PSDs in the segment. This averaged periodogram with overlapped time
windows tends to reduce the variance for a single periodogram. This moving window is
windowed by the Tukey window with a cosine taper of 25% width to decrease sidelobe
leakage effects and to enhance the signal-to-noise ratio [Bloomfield, 2004]. The window
length has 10000 sec so that the longest resolvable period is roughly 1000 sec (10 Hz)
following an empirical relationship that the reliable longest period is about one-tenth of the
calculating window [McNamara & Buland, 2004]. The frequencies are evenly spaced in a
logarithmic scale with a step of 0.02 between 107 and 10°%¢ (= 7.24) Hz. We then applied
one-third octave smoothing to the PSD of each segment for reducing measurement noise
[Hatziantoniou & Mourjopoulos, 2000; O’Haver, 2016; Tylka et al., 2017].

Let’s take the SP time series shown in Fig. 2a as an example. Figure 2b demonstrates the
PSD using the WD data for the NS component estimated by the above-mentioned method.
We observed that the PSD between 0.001 and 0.1 Hz is approximately linear in a log-log
scale. The linear fitting of the PSD was then estimated by using the least-squares regression
(see Section 3.4). Furthermore, we estimated the daily PSDs using the different time-spanned
data for all components and stations. Figure 3 illustrates the spectrogram at CHCH from its

start date to 31 December 2017.

3.3 Probability density function
To investigate the ambient SP noises, we at each frequency calculated the PDF of the

PSDs for the different time-spanned data. We grouped the PSD values into bins of 0.1
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logi0(mV?/km?/Hz) wide, ranging from -5 to 7, obtained histogram, and then divided by the
total number of PSDs. Figures 4a and 4b demonstrate the PDFs for the WD data at
frequencies of 0.003, 0.03, 0.3, and 3 Hz at CHCH. We observed that for both components
the PDFs at lower frequencies, particularly when f = 0.003 Hz, are usually skewed to the high
power densities. This implies that most of affecting factors on the SP signals seriously disturb
the low-frequency signals. Figures 4c and 4d further demonstrate the probabilistic power
spectral densities (PPSDs), which represent the PDFs for all frequencies in one plot. We also
estimated and plotted the 5" percentile (Ps), mode (Pm), 95" percentile (Pos) at each
frequency, which are referred to as the ambient SP noise models hereafter. In this case, the
percentages around the P, (f) are greater than 12% for both components. Moreover, the
distance of Py (f) — Ps(f) decreases with the frequency. This suggests that the SP signals
at the low frequencies (f < 0.1 Hz) are more sensitive than those at the high frequencies (f >
0.1 Hz).

Figures 5a and 5b show the PPSD images using the DT data at CHCH for the NS and
EW components, respectively. In contrast, Figs. 5¢ and 5d show the PPSD images using the
NT data for the NS and EW components, respectively. The percentages on the P,,(f) for the
DT and NT data for both components are all greater than 12%. On the other hand, the
distances of Pos(f) — Ps(f) with f < 0.1 Hz for the NT data are smaller than those for the
DT data. The day-night difference in this case logically suggests less interference of artificial
noises during the nighttime. The distances of Pos(f) — Ps(f) with f > 10 Hz for the NT
data for the EW component are wider than those for the NS component. This might be due to
the induced telluric currents by the interference of the Earth’s magnetic field or the telluric

current circulation from land to sea [Simpson & Bahr, 2005; Zhang et al., 2019].

3.4 Scaling exponent of self-potential 1/f# noise

The time dynamics of observational signals in the crustal system may exhibit correlation
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structures and self-similarity in mechanical [Chen et al., 2006; Sarlis et al., 2015; Turcotte,
1999] or electromagnetic ways [Contoyiannis et al., 2004; Eftaxias et al., 2003; Potirakis et
al., 2017; Rong et al., 2012; Varotsos et al., 2003], which generally indicate the inherent
memory of the system generating those signals. Such correlation can be revealed by the
power-law behavior of the PSD:

P(f) « 1/fF. (1)

The scaling exponent £ is usually observed in the range 0 < < 3 and is generally estimated
as the slope of the line fitting in the least-squares sense of Eq. (1) presented in log-log scales:
log1o(P) = a — B - log,o(f), (2)

where o is a constant.

As a rule of thumb, a candidate power law should meaningfully exhibit a linear relationship
in a log-log scale over approximately two orders of magnitude in both axes [Stumpf & Porter,
2012]. Hence, we selected a moving frequency window with 2 logarithmic orders with a
shifting step of 0.2 logarithmic orders. For example, we fitted Eq. (2) to the PSDs between
103 and 10 Hz, between 102® and 10°8 Hz, and so on, until fitting between 102 and 10°8
Hz. In this study, we attempted to understand whether there is a frequency-dependent
relationship of the SP data with the urbanization data, GR b value, and dilation strain rate.
Using the WD data by fitting Eq. (2) to the PSDs between 0.001 and 0.1 Hz, Fig. 6 illustrates
at CHCH the daily variations of the estimated £ values and the coefficient of determination
(R?) that quantifies how good the regression line fits the data. We observed that most of the
values for both components are in the range of 1-2 with R? > 0.8.

Further, we calculated the mean values and standard deviations of the daily estimated S
and « values with R? > 0.8 for each SP station during 2012—2017. Table 2 shows the mean
values of 4 and o (denoted as § and @) and the standard deviations of them (denoted as op
and o) for all components and stations by using the different time-spanned data. In this case

of fitting the PSDs between 0.001 and 0.1 Hz, Figs. 7a and 7b also illustrate the spatial
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distributions of the S values using the NT data (denoted as Byr) for the NS and EW
components, respectively. We observed that, for the different time-spanned data and both
components, the B values for most of the SP stations range from 1 to 1.5 with og from0.2
to 0.4. This indicates that the ambient SP noises are often characterized by the flicker-noise
and Brownian-noise processes [Guzman-Vargas et al., 2009; Ramirez-Rojas et al., 2004]. On
the other hand, the a values for most of the SP stations range from -2 to 0 with o5 from 0.5
to 1.5. However, the scientific community was less interested in the discussion of the a values.
In this paper, we attempted to discuss the related issue regarding the « values in the SP noises

with the urbanization level, GR b value, and dilation strain rate.

3.5 Gutenberg-Richter b value

The frequency-magnitude distribution of seismicity is generally characterized by a
power-law behavior [Gutenberg & Richter, 1944], also called the Gutenberg-Richter (GR)
law:
logio[NGm = M.)] = a — bm, (3)
where N(m = M_) is the number of earthquakes with magnitude (m) larger than or equal to
the completeness of magnitude (Mc), b is a scaling parameter, and a is a constant. Earthquake
catalogs are shown to be incomplete at small magnitudes due to a detection threshold of
seismic instruments and networks [Rydelek & Sacks, 1989]; hence, assessing the Mc value is
critical. In this study, we estimated the b and Mc values by using the Clauset method [Clauset
et al., 2009; Virkar & Clauset, 2014], which optimizes the lower data cutoff (i.e.,
completeness of magnitude in seismology) by minimizing the Kolmogorov-Smirnov distance
between the empirical cumulative probability function (CDF) obtained from the data and the
analytical CDF obtained via the GR-law parameters. The detailed application of the Clauset
method can also be referred to a study [Li et al., 2015].

In this study, the b value was estimated by the earthquake catalog selected within a
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50-km radius of each SP station, which is also the interstation distance. Table 1 shows the b
value corresponding to each station. The errors in the b values were also calculated by using a
bootstrap approach [Schorlemmer et al., 2003]. In this approach, we randomly resampled a
dataset of the same number of events on the selected catalog for each station and used the
Clauset method to estimate the b value of the resampled dataset. We repeated this procedure
1000 times and took the mean value and standard deviation to represent the confidence in b
(denoted as b and o). As Figure 7c shows the spatial distribution of the estimated b
values, which are close to 1 for most areas. However, the middle and western sides of Taiwan
are characterized by smaller b values (below 0.9) than the eastern side. Furthermore, the
northern sides are featured by higher b values (above 1.1); particularly, the b value (b =
1.74 £ 0.29) is maximum at SHRL located on the Tatun Volcano Group, in agreement that

volcanic areas are usually featured by higher b values [Pu et al., 2014; Wiemer & McNaultt,

1997; Wyss et al., 1997].

3.6 Dilation strain rate

The dilation strain rate (D) is the first invariant of the strain rate tensor (£;;), which
equals the trace of &;;:
D = épp + &y + Eps 4)
Since the GPS does not provide reliable vertical velocities [Schmidt et al., 2003; Wing &
Frank, 2011], we considered the areal dilation rate, which is the sum of the maximum and
minimum principal strain rates (¢, and &,, respectively):
D=2¢ +5¢,. (5)
The positive and negative D values correspond, respectively, to extension or elongation and
contraction or shortening. We derived strain rates from the GPS velocities based on the VISR
(Velocity Interpolation to Strain Rates) method described by Shen et al. [2015]. In this

method, we meshed the Taiwan area and set a grid size of 0.05 x 0.05 degree. The local strain
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rate at each node of the grid was estimated from local geodetic measurements using Gaussian
and Voronoi cell weightings to automatically reduce the contribution of far stations from the
node within the entire network. A uniform strain rate field was assumed at each node of the
grid and a weighted least squares inversion was performed over strain component solutions
and their covariance for the unknowns of translation, rotation, and strain. Next, we estimated
the derived quantities of the strain rates such as the principal strain rates and dilation strain
rates.

We then selected the nodes of the grid within a 20-km radius of each SP station and
averaged the dilation strain rates of the selected nodes. Table 1 lists the mean values and
standard deviations of the dilation strain rates (denoted as D and op). Figure 7d shows the
spatial distribution of the D values. The large positive D values (above 0.2 pstrain/yr)
feature around TOCH on account of the back-arc rifting or extension in the Okinawa Trough
[Liu et al., 2016; Sibuet et al., 1987]. On the other hand, the large negative D values (below

-1.6 ustrain/yr) appear at YULI and RUEY due to the strong convergence of the Luzon arc

[Mouthereau et al., 2009; S. Yu et al., 1999].

4 Results
4.1 Ambient self-potential noise models

In this section, we paid attention to the comparisons of the SP noise models (Ps, Pwm, and
Pgs) under different conditions, such as the urbanization level, electric trains (associated with
the day-night difference), and precipitation.

To understand the influence of the urbanization level on the SP data, we compared the
SP noise models for the WD data at KAOH with those at HUAL, as shown in Fig. 8. Station
KAOH (U = 4) is situated in highly industrialized areas in Taiwan and close to the area of U
= 5, while HUAL (U = 1) is located in desolate mountain areas as a silent spatial reference.

We observed that the SP noise models for both components at KAOH are flatter than those at
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HUAL, which are close to white noises. Moreover, distinct ripples appear in the noise models
at KAOH, particularly at frequencies of 0.01 and 1 Hz. These results indicate the serious
interference by human activities at KAOH, the highly industrialized area.

Second, to understand the effect of the electric trains on the SP data, we compared the
SP noise models for the DT data with those for the NT data at HERM and HUAL, as shown
in Fig. 9. Station HERM is close to a busy train station with a distance of 5 km, whereas there
is no train effect at HUAL in remote mountains. Additionally, the DT data is spanned during
the working hours of 09:00-14:00 Local Time; contrarily, the NT data is spanned during
00:00-05:00 Local Time, when the train effect can be totally avoided, as a quiet temporal
reference. We observed that, at HERM and for both components, the SP noise models when f
> 10%° Hz during the nighttime are 0.5 logio(mV?/km?/Hz) smaller than those during the
daytime. Exceptionally, the Pos models around f = 1 Hz feature a distinct ripple and have the
same order for both DT and NT data. Moreover, the distances of Pys(f) — Ps(f) with f <
0.01 Hz during the nighttime are smaller than those during the daytime. As the quiet
reference at HUAL, the SP noise models are overall similar for both the DT and NT data.
Only the Pos model for the NS component during the nighttime is smaller than that during the
daytime.

Third, to understand the impact of precipitation on the SP data, we compared the SP
noise models at the quiet station HUAL and using the WD data, which were re-estimated by
the proposed methodology under the conditions of precipitation equal to 0 mm/day, greater
than 50 mm/day, and greater than 100 mm/day. Figure 10a shows the daily time series of
precipitation at HUAL, which displays the seasonal variations that the precipitation amounts
are highly focused in summer times. Figures 7b and 7c show the ambient noise models with
precipitation equal to 0 mm/day and greater than 50 mm/day for the NS and EW components,
respectively. Here the SP noise models with precipitation equal to 0 mm/day are served as a

dry reference. Figures 7d and 7e also show the SP noise models with precipitation equal to 0
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mm/day and greater than 100 mm/day for the NS and EW components, respectively. We
observed that the Py models are almost the same for the three precipitation conditions.
However, the Ps model for the NS component with precipitation > 100 mm/day has larger
PSDs for all frequencies than that with precipitation > 50 mm/day, which has also larger
PSDs than that with precipitation of 0 mm/day. Moreover, the Pgs model for the EW
component with precipitation > 100 mm/day has larger PSD when f > 1097 Hz than that with
precipitation > 50 mm/day, which has also larger PSDs than that with precipitation of 0
mm/day. Overall, whether the precipitation is considered, the ambient SP noise models show
little difference. The reason may be that long dipole lengths are used (1-3 km) in the GEMS
network. While the precipitation can cause a prominent flow direction in small scales and the
strong effect of the precipitation on the SP signals in short dipole lengths such as tens of

meters, the GEMS data look immune to rainfalls.

4.2 Correlations among self-potential power-law parameters, urbanization level,
Gutenberg-Richter b value, and dilation strain rate

In this section, we focused on analyzing spatial correlations (symbolized as p hereafter)
among the urbanization level (U), GR b value, dilation strain rate (D), and SP power-law
parameters (@ and B) using the different time-spanned data and for both components. By the
way; we simply denoted the correlation between U and b as py j, for instance.

Figure 11 illustrates the correlation and corresponding p-value matrices when the @ and
S values were estimated in the frequency band of 0.001-0.1 Hz. The correlation matrices for
the NS and EW components are imaged as Figs. 11a and 11c, respectively; correspondingly,
the p-value matrices for the NS and EW components are imaged as Figs. 11b and 11d,
respectively. We observed that the absolutes of correlations with |p| > 0.1 have significance
with p < 0.1. The correlations of pzwp zpr: Pawp ant, ad pgpr zyr are highly correlated,
and so are those of pzy,p 5pry PEwp gnrs @A Pgpr gar- This logically indicates that the SP
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power-law models at each station have similar patterns whether they are estimated using the
WD, DT, or NT data. No spatial correlation exists between U and D (py p = 0.1), which is
reasonable that the crustal deformations are mainly caused by plate motions and mantle
convection [Pysklywec & Beaumont, 2004; S. Yu et al., 1999]. However, a moderate
correlation seems to exist between U and b (py 5 = 0.39) (see Section 5). Moreover, a
moderate correlation might also exist between b and D (p; 5 = 0.41) in agreement with
the finding that seismicity is more common at positive strain rate values [Hauksson, 2011;
Nakamura & Kinjo, 2018].

We now concentrated on the correlations of the SP power-law parameters with the
urbanization level, GR b value, and dilation strain rate. In this case of @ and 8 estimated
between 0.001 and 0.1 Hz, we observed that the correlations between U and S for the
different time-spanned data are featured by relatively high negative values (-0.65 to -0.47) for
both components. This means that larger U values correspond to smaller S values, that is
reminiscent of the case of KAOH (Fig. 8). We considered that the SP signals are seriously
dominated by white noises when an SP station is located in highly urbanized areas. However,
in this case, the correlations of @ and 8 with b and D almost do not exist (|p| < 0.3).

To further understand the influence of the urbanization level, GR b value, and dilation
strain rate on the frequency-dependent SP power-law parameters, we then analyzed the
correlations of U, b and D with @ and S estimated in different frequency bands (see
Section 3.4). Figure 12 shows the correlations of U, b and D with @ estimated in different
frequency bands for both components using the different time-spanned data. We observed
that, no matter what frequency bands are involved, most of them are not correlated (|p| <
0.3). Exceptionally, the correlations between U and &,; at some frequency bands can be
featured by large negative values (below -3). This again implies that high human activities
during the daytime indeed seriously affect the SP signals. On the other hand, Fig. 13 similarly

shows the correlations of U, b and D with § estimated in different frequency bands. We

©2019 American Geophysical Union. All rights reserved.



observed that, at certain frequency bands, moderate correlations of U, b and D with § can
reach values of |p| > 0.3. This result indicates that the correlations are frequency-dependent.
Compared those curves, the optimal frequency bands (1022 to 1 Hz) can be found due to

higher positive correlations of p; z and pp 5 and less correlation of py; 3.

5 Discussion and conclusions

The effects of anthropogenic factors (e.g., electric trains, factories, and power pipelines)
are reported to disturb electromagnetic signals [Fraser-Smith & Coates, 1978; Ishikawa et al.,
2007; Saito et al., 2011; Viljanen & Pirjola, 1994]. However, it is difficult to quantify such
anthropogenic factors in certain areas. Here we choose the detailed spatial distribution of the
urbanization level in Taiwan estimated by Huang et al. [2018] on behalf of the anthropogenic
factors. In this paper, we demonstrated the comparisons of the ambient SP noise models
under different artificial factors, such as the urbanization level and electric trains. As Fig. 8
shows, the comparison for the urbanization level suggests that the SP signals are
characterized by white noise processes in areas of high industrialization or human activity.
On the other hand, in Fig. 9, the day-night difference, which mostly responds to the train
effect, between the SP noise models indicates that the SP signals with f > 10°° (= 0.32) Hz
and f < 0.01 Hz are mainly affected by the train noises during the daytime. Hence, installing
one SP station in the above-mentioned areas should be avoided. However, due to site
limitations, the SP signals are sometimes inevitably disturbed by the anthropogenic factors.
Logically, a further and critical step is to develop a noise reduction method or apply
developed methods to distinguish noises from signals, such as remote reference [Larsen, 1997;
Oettinger et al., 2001] and interstation transfer function [Harada et al., 2004; Takahashi et al.,
2007]. The ambient SP noise models proposed here play an important role to examine
whether noises are successfully extracted from signals after using noise reduction methods.

For example, we would expect that the SP noise models become flicker-noise or
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Brownian-noise patterns and the spectral ripples in the noise models disappear if one applied
the interstation transfer function approach to the SP signals at KAOH. At present, this
remains an open question and will be our future work.

The most important topic is to study the frequency dependence of the correlations of the
SP power-law parameters (o and £) with the urbanization level (U), GR b value, and dilation
strain rate (D). As Fig. 12 shows, the a values are not correlated with the U, b, and D values.
However, the a represents the energy level of the analyzed signals; hence, we believed that
the a values in the SP power-law models should be related to the geological settings or
hydrological conditions, which can affect the electromagnetic signals [Befus et al., 2014;
Rizzo et al., 2004]. On the other hand, the correlations of g with U, b, and D show the
frequency dependence, and the optimal frequency band is found between 1022 (= 0.006) and
1 Hz, at which there are relatively high correlations between £ and b and between g and D
and relatively low correlation between g and U. The Earth’s crust, as a complex dynamic
system, exhibits the fractal behaviors in the mechanical and electromagnetic ways in the same
time [Rabinovitch et al., 2001]; hence, the fractals in the seismicity and SP data logically
have a positive correlation, which reaches a maximum of 0.6 in this study. Moreover, the
correlation between p and D reaches a maximum of 0.4. As Oncel & Wilson [2004] pointed
out, the crustal deformations can affect the fractal behaviors in the crust. Therefore, there are
positive correlations among S, b, and D in this study. However, it is still unsolved that the
effects of the anthropogenic and crustal factors on the SP signals between 0.006 and 1 Hz are
better performed.

In the investigation of the spatial correlation matrix, interestingly, the positive
correlation between the urbanization level and GR b value seems to exist. The urbanization
level is mainly related to the degree of population, which is related to the surface mass
loading. Hence, the high urbanization level represents large surface mass loading. It has been

reported that the surface mass loading may affect the seismicity, such as snow load [Heki,
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2003] and reservoir mass [Mandal et al., 2005; Simpson, 1976]. Additionally, the coverage
and detection of the seismic network should be considered. The seismometers in Taiwan are
densely distributed in cities (high urbanization level) rather than in mountain areas (low
urbanization level) [Shin et al., 2013]; hence, more small earthquakes in highly urbanized
areas may be recorded and the GR b values are then affected to increase. However, there is no
rigorous analysis and inference in this paper; hence, it is still arguable that earthquakes may
be triggered by the population mass loading or caused due to the detection capability of the
seismic network.

In_conclusion, we have investigated the ambient SP noise models under different
conditions, such as the urbanization level, electric trains, and precipitation. Understanding the
patterns of the ambient SP noises is helpful to maintain the original SP stations or deploy new
stations. As a typical example, the SP signals at KAOH are atrocious. Second, we have
investigated the spatial correlation matrix and its frequency dependence of the SP power-law
parameters with the urbanization level, GR b value, and dilation strain rate. The
determination of the optimal frequency band allows us to filter and screen the SP signals and
improve the quality of the SP analyses. Consequently, this paper may be conducive to

understand the seismo-electric theory and mechano-electric features in the crust.
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Table 1. Properties of the SP stations on the GEMS network. The first three columns are the
name, location, and the start date of a station, respectively. The fourth column is the number
of the segments for estimating the PSDs using the WD, DT, and NT data. The fifth column is
the urbanization level (U) estimated by Huang et al. (2018). The sixth column is the slope of
the Gutenberg-Richter distribution (b) estimated by the catalog selected during 2012-2017
and within a 50-km radius of each SP station. The seventh column is the dilation strain rate
(D) in pstrain/yr derived from the GPS data during 2012-2017. The b and D values are

represented by mean within one standard deviation.

Station Start Date Number of Analyzed Segments
Location (°E, °N) ] b D (ustrain/yr)
Name (yyyy-mm-dd) (WD, DT, NT)

SHRL 12156, 25.16 2012-05-02 2012, 2025, 2025 4 1.74+0.29 0.0783+0.0580
KUOL 121.14,24.96 2012-01-01 2133, 2144, 2147 3* 1.22+0.05 -0.0614+0.0507
TOCH  121.81,24.84 2013-08-29 1356, 1365, 1367 3 1.14+0.03 0.5416+0.0395
HUAL  121.37, 24.67 2012-01-17 1710, 1983, 1690 1 1.07+0.02 0.0025+0.0301
ENAN- 1121.79, 24.48 2012-02-15 1996, 2024, 2020 3 0.94+0.02 0.2333+0.0520
DAHU 120.90, 24.41 2012-02-07 2117, 2125, 2125 1 1.05+0.03 -0.1885+0.0348
LISH 121.25,24.25 2012-11-07 1717,1744,1731 1 0.92+0.03 0.0586+0.0321
SHCH  121.63,24.12 2012-04-23 1997, 2009, 2004 3 0.90+0.01 -0.3252+0.0593
HERM 120.50, 24.11 2012-02-09 2055, 2071, 2066 2 0.99+0.04 -0.0984+0.0481
PULI 120.98, 23.92 2012-03-01 2022, 2027, 2026 2* 0.88+0.04 -0.4940+0.0416
FENL 121.41,23.72 2012-04-23 1953, 1968, 1970 1 0.80+0.01 -0.7178+0.0429
SIHU 120.23, 23.64 2012-02-08 1958, 2001, 1991 1 1.05+0.04 -0.1375+0.0490
DABA 120.75, 23.45 2013-02-01 1772,1772, 1773 3 0.90+0.01 -0.4715+0.0446
YULI 121.32,23.32 2012-04-23 2024, 2037, 2035 3 0.85+0.01 -1.6821+0.0506
CHCH 120.16, 23.22 2012-03-01 2019, 2031, 2025 2 0.99+0.03 -0.2191+0.0396
LIOQ 120.66, 23.03 2012-07-20 1943, 1945, 1941 1 0.88+0.01 -0.2529+0.0543
RUEY 121.16,22.97 2012-04-23 2044, 2052, 2052 1 0.86+0.01 -1.7620+0.0621
KAOH 120.29, 22.66 2012-02-23 2067, 2073, 2069 4 0.95+0.03 -0.0944+0.0658
WANL 120.59, 22.59 2012-12-20 1681, 1703, 1702 3 0.94+0.02 -0.2709+0.0410
FENG  120.70, 22.20 2012-12-20 1400, 1528, 1493 1 0.98+0.03 0.4615+0.0347

*Note that (1) the urbanization level at KUOL is set U = 3 due to its proximity between areas
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2 and U = 4; (2) similarly, we set U = 2 at PULI between areas of U =1and U = 3.
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Station
Name
SHRL
KUOL
TOCH
HUAL
ENAN
DAHU
LISH
SHCH
HERM
PULI
FENL
SIHU
DABA
YULI
CHCH
LIOQ
RUEY

KAOH

Table 2. Mean values and standard deviations of the SP power-law parameters estimated by

fitting EQ. (2) to the PSDs between 0.001 and 0.1 Hz by using the WD, DT, and NT data for

the NS and EW components.

Pwo (NS; EW)

1.14+0.51; 1.20+0.38
1.22+0.31; 1.26+0.28
1.15+0.30; 1.17+0.21
1.58+0.21; 1.41+0.32
1.02+0.28; 0.87+0.26
1.46+0.20; 1.45+0.23
1.36+0.21; 1.31+0.25
1.10+0.18; 1.07+0.23
1.06+0.23; 1.05+0.24
1.22+0.22; 1.150.27
1.36+0.26; 1.15+0.33
1.15+0.28; 1.14+0.27
1.22+0.23; 1.24+0.27
1.18+0.27; 0.93+0.37
1.48+0.26; 1.42+0.31
1.35+0.24; 1.36+0.23
1.17+0.23; 1.49+0.23

0.80£0.26; 0.87+0.25

WANL 1.28+0.36; 1.13+0.29

FENG

1.76+0.20; 1.37£0.24

Pot (NS; EW)

1.33+0.48; 1.20+0.44
1.16+0.30; 1.23+0.27
1.20+0.32; 1.17+0.23
1.52+0.22; 1.44+0.25
1.20+0.27; 1.15+0.28
1.40+0.24; 1.38+0.26
1.44+0.26; 1.43+0.26
1.13+0.23; 1.04+0.27
0.98+0.27; 1.01+0.27
1.16+0.27; 1.19+0.32
1.30+0.28; 1.06+0.33
1.24+0.30; 1.24+0.30
1.19+0.31; 1.21+0.31
1.19+0.29; 1.06+0.38
1.50+0.27; 1.46+0.27
1.3940.26; 1.40+0.27
1.10+0.25; 1.59+0.28
0.96+0.37; 0.92+0.33
1.41+0.36; 1.43+0.33

1.86+0.21; 1.48+0.26

Pt (NS; EW)

1.19+0.42; 1.33+0.38
1.22+0.33; 1.27+0.32
1.28+0.33; 1.24+0.27
1.49+0.29; 1.38+0.34
1.08+0.35; 1.01+0.33
1.54+0.23; 1.58+0.29
1.29+0.27; 1.24+0.30
0.96+0.22; 0.97+0.25
0.93+0.22; 0.95+0.24
1.17+0.23; 1.14+0.23
1.26+0.33; 1.11+0.33
1.12+0.29; 1.12+0.29
1.13+0.26; 1.23+0.33
1.11+0.25; 1.03+£0.31
1.32+0.25; 1.38+0.31
1.33+0.23; 1.32+0.24
1.15+0.24; 1.44+0.29
0.96+0.21; 0.88+0.20
1.12+0.30; 1.09+0.26

1.64+0.28; 1.36+0.30

awo (NS; EW)

-0.92+1.09; -0.17+0.99
-1.32+0.91; -1.80+1.31
-0.97+1.02; -0.34+0.93

0.21+0.93; -0.15+1.14
-0.18+0.61,;
-0.50+0.85; -0.33+1.01
-0.91+0.68; -0.26+0.72
-0.89+0.86; -1.00+0.77
-0.60+0.35; -0.14+0.37
-0.51+0.62; -0.89+0.65
-0.06+0.42;
-0.82+1.88; -0.21£1.25
-0.34+0.46; -0.39+0.38
-1.50+0.55; -0.71+0.67
-2.50+0.43; -2.51+0.59
-0.22+0.69; -0.54+0.75
-0.61+0.36; -1.32+0.54
-0.97+0.51; -1.20+0.53
-1.34+0.55; -1.49+0.62

-2.53%0.37; -2.15+0.52

0.67+0.66

0.19+0.78

aot (NS; EW)

-1.42+1.12; -0.64+1.14
-1.27+0.93; -1.82+1.28
-1.05+1.10; -0.30+1.04

0.35+1.23; -0.48+0.90
-0.81+0.55; -0.46+0.65
-0.46+0.98; -0.24+1.06
-1.25+1.21; -0.75+1.28
-1.11+0.96; -1.15+0.93
-0.72+0.37; -0.40+0.39
-0.98+0.53; -1.51+0.56
-0.02+0.49;
-1.52+2.09; -0.92+1.52
-0.46+0.51; -0.38+0.43
-1.52+0.60; -1.05+0.75
-2.86+0.53; -2.83+0.63
-0.40+0.75; -0.79+0.81
-0.80+0.49; -1.70+0.73
-1.09+1.53; -1.27+1.23
-1.92+0.67; -2.16+0.71

-2.78+0.44; -2.54+0.56

0.04+0.70

ant (NS; EW)

-1.42+0.92; -0.73+0.97
-1.72+1.09; -2.24+1.33
-2.01+1.10; -1.41+0.80

0.07+0.99; -0.27+1.32
-0.61+0.96; -0.35+1.31
-1.00+1.02; -0.95+1.18
-1.06+0.88; -0.44+1.08
-0.87+0.86; -1.02+0.72
-0.55+0.46; -0.10+0.53
-0.63+0.72; -1.12+0.80
-0.55+0.54; -0.12+0.98
-0.71+1.96; -0.20+1.38
-0.44+0.58; -0.72+0.48
-2.03+0.50; -1.40+0.57
-2.52+0.54; -2.79+0.52
-0.33+0.74; -0.67+0.74
-0.77+0.40; -1.53+0.52
-2.25+0.48; -2.42+0.41
-1.67+0.72; -1.76+0.88

-2.53+0.49; -2.31+0.61
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Figure 1. Maps of the SP stations on the GEMS network (red triangles) and of the
urbanization levels of the Taiwan townships (blue shading) as estimated by Huang et al.

(2018).
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Figure 2. (a) SP time series on 1 January 2016 at CHCH for the NS (blue) and EW (red)
components. The full-time scale represents the whole day (00:00-24:00 Local Time, WD),
the black dashed line represents the nighttime (00:00-05:00 Local Time, NT), and the black
solid line represents the daytime (09:00-14:00 Local Time, DT). (b) Illustration of the power
spectral density estimated using the WD data for the NS component in (a) and the fitting of
Eg. (2) (see Section 3.4) to the PSDs between 0.001 and 0.1 Hz by using the least-squares

regression in a log-log scale.
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Figure 3. Spectrogram of the SP signals using the WD data at CHCH for the NS (top) and

EW (bottom) components. The white areas correspond to discarded SP data or data missings.
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Figure 4. Probability density functions (PDFs) at CHCH using the WD data at frequencies of
0.003, 0.03, 0.3, and 3 Hz for the (a) NS and (b) EW components. Probability power spectral
densities (PPSDs) at CHCH using the WD data for the (c) NS and (d) EW components. The
PPSD shows the PDF at each frequency in one plot. The Pgs, Py, and Ps models represent the

95" percentile, mode, and 5™ percentile of the PDFs.

©2019 American Geophysical Union. All rights reserved.



CHCH DT NS

L]
1)
—

o

£

N

log, [PSD(mV?/km?/Hz)]
(-}

[

IS

3 25 2 45 4 05 0 05
Iogm[Freq(Hz)]

~
(]
~

CHCH NT NS

-]

Y

:
| :
b

(=] N

log, [PSD(mV?/km?/Hz)]
)

A

3 25 2 145 41 05 0 0.5
Iogw[Freq(Hz)]

(b) CHCH DT EW

Probability (%)
Iog_IO[PSD(mVZIkaIHz)]
Probability (%)

3 25 2 45 1 05 0 0.5
Iogw[Freq(Hz)]

18 (d) . . C‘HCH I‘:IT EW.

Probability (%)
log, O[FSD(mVZIkmlez)]
Probability (%)

3 25 2 45 1 05 0 0.5
Iogw[Freq(Hz)]

Figure 5. Probability power spectral densities (PPSDs) at CHCH using the DT data for the (a)

NS and (b) EW components. PPSDs at CHCH using the NT data for the (c) NS and (d) EW

components.
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Figure 6. Time series of the spectral scaling of the SP 1/f# noises (top) and coefficient of
determination R? (bottom) at CHCH for the WD data by fitting the PSDs between 0.001 and

0.1 Hz.
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Figure 7. Maps of the SP scalings Syr listed in Table 2 for the (a) NS and (b) EW

components. Maps of (c) the GR b values and (d) the dilation strain rates (D) listed in Table

1.
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Figure 8. Ambient SP noise models (Ps, Pm, and Pgs) at KAOH (blue) and HUAL (red) using

the WD data for the (a) NS and (b) EW components.
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Figure 9. Ambient SP noise models (Ps, Pm, and Pgs) at HERM using the DT and NT data for
the (a) NS and (b) EW components. Similarly, noise models at HUAL for the (c) NS and (d)

EW components.
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Figure 10. (a) Daily time series of the precipitation at HUAL during 2012-2017. Ambient SP
noise models (Ps, Pm, and Pgs) when precipitation is 0 mm (blue) and greater than 50 mm (red)
at HUAL using the WD data for the (a) NS and (b) EW components. Similarly, noise models

when precipitation is 0 mm (blue) and greater than 100 mm (red) for the (a) NS and (b) EW
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Figure 12. Correlations between U and & estimated using the different time-spanned data at
different frequency bands for the (a) NS and (b) EW components. Similarly, correlations
between b and @ for the (c) NS and (d) EW components and correlations between D and
a for the (e) NS and (f) EW components. The frequency tick in a logarithmic scale here

represents the frequency band between 10" and 10k*2 Hz (see Section 3.4).
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Figure 13. Correlations between U and B estimated using the different time-spanned data at
different frequency bands for the (a) NS and (b) EW components. Similarly, correlations
between b and S for the (c) NS and (d) EW components and correlations between D and
S for the (e) NS and (f) EW components. The frequency tick in a logarithmic scale here

represents the frequency band between 10" and 10k*2 Hz (see Section 3.4).
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