9,628 research outputs found

    Bulk Fermi surface coexistence with Dirac surface state in Bi2_2Se3_3: a comparison of photoemission and Shubnikov-de Haas measurements

    Full text link
    Shubnikov de Haas (SdH) oscillations and Angle Resolved PhotoEmission Spectroscopy (ARPES) are used to probe the Fermi surface of single crystals of Bi2Se3. We find that SdH and ARPES probes quantitatively agree on measurements of the effective mass and bulk band dispersion. In high carrier density samples, the two probes also agree in the exact position of the Fermi level EF, but for lower carrier density samples discrepancies emerge in the position of EF. In particular, SdH reveals a bulk three-dimensional Fermi surface for samples with carrier densities as low as 10^17cm-3. We suggest a simple mechanism to explain these differences and discuss consequences for existing and future transport studies of topological insulators.Comment: 5 mages, 5 figure

    Faradaic processes beyond Nernst’s law: density functional theory assisted modelling of partial electron delocalisation and pseudocapacitance in graphene oxides

    Get PDF
    The study of electron delocalisation in oxygen atom segregated zones in graphene, aided by the first-principles density functional theory, has revealed extra energy bands of ≥ 2 eV wide around the Fermi level, predicting faradaic charge storage occurring in a wide range of potentials, which disagrees with Nernst’s Law but accounts well for the so called pseudocapacitance of heteroatommodified graphene based electrode materials in supercapacitors

    Poincar\'e gauge theory with even and odd parity dynamic connection modes: isotropic Bianchi cosmological models

    Full text link
    The Poincar\'e gauge theory of gravity has a metric compatible connection with independent dynamics that is reflected in the torsion and curvature. The theory allows two good propagating spin-0 modes. Dynamical investigations using a simple expanding cosmological model found that the oscillation of the 0+^+ mode could account for an accelerating expansion similar to that presently observed. The model has been extended to include a 0−0^{-} mode and more recently cross parity couplings. We investigate the dynamics of this model in a situation which is simple, non-trivial, and yet may give physically interesting results that might be observable. We consider homogeneous cosmologies, more specifically, isotropic Bianchi class A models. We find an effective Lagrangian for our dynamical system, a system of first order equations, and present some typical dynamical evolution.Comment: 8 pages, 1 figures, submitted to IARD 2010 Conference Proceedings in {\em Journal of Physics: Conference Series}, eds. L. Horwitz and M. Land (2011

    Hamiltonian analysis of Poincar\'e gauge theory scalar modes

    Full text link
    The Hamiltonian constraint formalism is used to obtain the first explicit complete analysis of non-trivial viable dynamic modes for the Poincar\'e gauge theory of gravity. Two modes with propagating spin-zero torsion are analyzed. The explicit form of the Hamiltonian is presented. All constraints are obtained and classified. The Lagrange multipliers are derived. It is shown that a massive spin-0−0^- mode has normal dynamical propagation but the associated massless 0−0^- is pure gauge. The spin-0+0^+ mode investigated here is also viable in general. Both modes exhibit a simple type of ``constraint bifurcation'' for certain special field/parameter values.Comment: 28 pages, LaTex, submitted to International Journal of Modern Physics

    How lamina-associated polypeptide 1 (LAP1) activates Torsin

    Get PDF
    Lamina-associated polypeptide 1 (LAP1) resides at the nuclear envelope and interacts with Torsins, poorly understood endoplasmic reticulum (ER)-localized AAA+ ATPases, through a conserved, perinuclear domain. We determined the crystal structure of the perinuclear domain of human LAP1. LAP1 possesses an atypical AAA+ fold. While LAP1 lacks canonical nucleotide binding motifs, its strictly conserved arginine 563 is positioned exactly where the arginine finger of canonical AAA+ ATPases is found. Based on modeling and electron microscopic analysis, we propose that LAP1 targets Torsin to the nuclear envelope by forming an alternating, heterohexameric (LAP1-Torsin)[subscript 3] ring, in which LAP1 acts as the Torsin activator. The experimental data show that mutation of arginine 563 in LAP1 reduces its ability to stimulate TorsinA ATPase hydrolysis. This knowledge may help scientists understand the etiology of DYT1 primary dystonia, a movement disorder caused by a single glutamate deletion in TorsinA.National Institute of General Medical Sciences (U.S.) (Award GM103403)United States. Dept. of Energy. Office of Basic Energy Sciences (Contract DE-AC02-06CH11357

    Repurposing lignin to generate functional afterglow paper

    Get PDF

    Unravelling the genetic diversity among cassava Bemisia tabaci whiteflies using NextRAD Sequencing

    Get PDF
    Article purchased; Published online: 31 Oct 2017Bemisia tabaci threatens production of cassava in Africa through vectoring viruses that cause cassava mosaic disease (CMD) and cassava brown streak disease (CBSD). B. tabaci sampled from cassava in eight countries in Africa were genotyped using NextRAD sequencing, and their phylogeny and population genetics were investigated using the resultant single nucleotide polymorphism (SNP) markers. SNP marker data and short sequences of mitochondrial DNA cytochrome oxidase I (mtCOI) obtained from the same insect were compared. Eight genetically distinct groups were identified based on mtCOI, whereas phylogenetic analysis using SNPs identified six major groups, which were further confirmed by PCA and multidimensional analyses. STRUCTURE analysis identified four ancestral B. tabaci populations that have contributed alleles to the six SNP-based groups. Significant gene flows were detected between several of the six SNP-based groups. Evidence of gene flow was strongest for SNP-based groups occurring in central Africa. Comparison of the mtCOI and SNP identities of sampled insects provided a strong indication that hybrid populations are emerging in parts of Africa recently affected by the severe CMD pandemic. This study reveals that mtCOI is not an effective marker at distinguishing cassava-colonizing B. tabaci haplogroups, and that more robust SNP-based multilocus markers should be developed. Significant gene flows between populations could lead to the emergence of haplogroups that might alter the dynamics of cassava virus spread and disease severity in Africa. Continuous monitoring of genetic compositions of whitefly populations should be an essential component in efforts to combat cassava viruses in Africa
    • …
    corecore