318 research outputs found

    Cross-Species Array Comparative Genomic Hybridization Identifies Novel Oncogenic Events in Zebrafish and Human Embryonal Rhabdomyosarcoma

    Get PDF
    Human cancer genomes are highly complex, making it challenging to identify specific drivers of cancer growth, progression, and tumor maintenance. To bypass this obstacle, we have applied array comparative genomic hybridization (array CGH) to zebrafish embryonal rhabdomyosaroma (ERMS) and utilized cross-species comparison to rapidly identify genomic copy number aberrations and novel candidate oncogenes in human disease. Zebrafish ERMS contain small, focal regions of low-copy amplification. These same regions were commonly amplified in human disease. For example, 16 of 19 chromosomal gains identified in zebrafish ERMS also exhibited focal, low-copy gains in human disease. Genes found in amplified genomic regions were assessed for functional roles in promoting continued tumor growth in human and zebrafish ERMS – identifying critical genes associated with tumor maintenance. Knockdown studies identified important roles for Cyclin D2 (CCND2), Homeobox Protein C6 (HOXC6) and PlexinA1 (PLXNA1) in human ERMS cell proliferation. PLXNA1 knockdown also enhanced differentiation, reduced migration, and altered anchorage-independent growth. By contrast, chemical inhibition of vascular endothelial growth factor (VEGF) signaling reduced angiogenesis and tumor size in ERMS-bearing zebrafish. Importantly, VEGFA expression correlated with poor clinical outcome in patients with ERMS, implicating inhibitors of the VEGF pathway as a promising therapy for improving patient survival. Our results demonstrate the utility of array CGH and cross-species comparisons to identify candidate oncogenes essential for the pathogenesis of human cancer

    Evaluation of a Multidisciplinary Team Approach for Generating Survivorship Care Plan Treatment Summaries in Patients With Breast Cancer

    Get PDF
    INTRODUCTION:: The optimal structure for survivorship care plan (SCP) programs and methodology for generating treatment summaries (TSs) has not yet been defined, but the Commission on Cancer and the National Accreditation Program for Breast Centers both mandate that participating oncology programs implement SCP-TS processes for patients that have completed treatment. METHODS:: We used the Institute for Healthcare Improvement\u27s Plan-Do-Study-Act model for conducting a quality improvement project evaluating two different SCP-TS programs implemented at the Henry Ford Health System/Henry Ford Cancer Institute\u27s Breast Oncology Program in Detroit, Michigan. System I involved TSs drafted by nonspecialist breast clinic staff; System II involved TSs vetted through a multidisciplinary breast specialist conference approach. Accuracy of basic documentation entries related to dates and components of treatment were compared for the two approaches. RESULTS:: Seventy-one System I and 93 System II documents were reviewed. Documentation was accurate in at least 90% of documents for both systems regarding delivery of chemotherapy and/or endocrine therapy and for documenting the identity of the various members of the cancer treatment team. Both systems had notable inaccuracies in documenting type of surgery performed, but System II had fewer inaccuracies than System I (33.78% v 51.67%, respectively; P = .05). System II, compared with System I, had fewer inaccuracies in documenting date of diagnosis (9.68% v 25.35%, respectively; P = .01) and had less missing information for dose of radiation delivered (9.33% v 33.9%, respectively; P \u3c .01). CONCLUSION:: A multidisciplinary team approach to drafting and reviewing SCP-TS documents improved content accuracy for our program, but ongoing education regarding documentation of various surgical procedures is warranted

    Evaluation of a Multidisciplinary Team Approach for Generating Survivorship Care Plan Treatment Summaries in Patients With Breast Cancer

    Get PDF
    INTRODUCTION: The optimal structure for survivorship care plan (SCP) programs and methodology for generating treatment summaries (TSs) has not yet been defined, but the Commission on Cancer and the National Accreditation Program for Breast Centers both mandate that participating oncology programs implement SCP-TS processes for patients that have completed treatment. METHODS: We used the Institute for Healthcare Improvement\u27s Plan-Do-Study-Act model for conducting a quality improvement project evaluating two different SCP-TS programs implemented at the Henry Ford Health System/Henry Ford Cancer Institute\u27s Breast Oncology Program in Detroit, Michigan. System I involved TSs drafted by nonspecialist breast clinic staff; System II involved TSs vetted through a multidisciplinary breast specialist conference approach. Accuracy of basic documentation entries related to dates and components of treatment were compared for the two approaches. RESULTS: Seventy-one System I and 93 System II documents were reviewed. Documentation was accurate in at least 90% of documents for both systems regarding delivery of chemotherapy and/or endocrine therapy and for documenting the identity of the various members of the cancer treatment team. Both systems had notable inaccuracies in documenting type of surgery performed, but System II had fewer inaccuracies than System I (33.78% v 51.67%, respectively; P = .05). System II, compared with System I, had fewer inaccuracies in documenting date of diagnosis (9.68% v 25.35%, respectively; P = .01) and had less missing information for dose of radiation delivered (9.33% v 33.9%, respectively; P \u3c .01). CONCLUSION: A multidisciplinary team approach to drafting and reviewing SCP-TS documents improved content accuracy for our program, but ongoing education regarding documentation of various surgical procedures is warranted

    Interaction between SNAI2 and MYOD enhances oncogenesis and suppresses differentiation in Fusion Negative Rhabdomyosarcoma

    Get PDF
    Rhabdomyosarcoma (RMS) is an aggressive pediatric malignancy of the muscle, that includes Fusion Positive (FP)-RMS harboring PAX3/7-FOXO1 and Fusion Negative (FN)-RMS commonly with RAS pathway mutations. RMS express myogenic master transcription factors MYOD and MYOG yet are unable to terminally differentiate. Here, we report that SNAI2 is highly expressed in FN-RMS, is oncogenic, blocks myogenic differentiation, and promotes growth. MYOD activates SNAI2 transcription via super enhancers with striped 3D contact architecture. Genome wide chromatin binding analysis demonstrates that SNAI2 preferentially binds enhancer elements and competes with MYOD at a subset of myogenic enhancers required for terminal differentiation. SNAI2 also suppresses expression of a muscle differentiation program modulated by MYOG, MEF2, and CDKN1A. Further, RAS/MEK-signaling modulates SNAI2 levels and binding to chromatin, suggesting that the differentiation blockade by oncogenic RAS is mediated in part by SNAI2. Thus, an interplay between SNAI2, MYOD, and RAS prevents myogenic differentiation and promotes tumorigenesis. Rhabdomyosarcomas are tumours blocked in myogenic differentiation, which despite the expression of master muscle regulatory factors, including MYOD, are unable to differentiate. Here, the authors show that SNAI2 is upregulated by MYOD through super enhancers, binds to MYOD target enhancers, and arrests differentiation

    The expression level of HJURP has an independent prognostic impact and predicts the sensitivity to radiotherapy in breast cancer

    Get PDF
    INTRODUCTION. HJURP (Holliday Junction Recognition Protein) is a newly discovered gene reported to function at centromeres and to interact with CENPA. However its role in tumor development remains largely unknown. The goal of this study was to investigate the clinical significance of HJURP in breast cancer and its correlation with radiotherapeutic outcome. METHODS. We measured HJURP expression level in human breast cancer cell lines and primary breast cancers by Western blot and/or by Affymetrix Microarray; and determined its associations with clinical variables using standard statistical methods. Validation was performed with the use of published microarray data. We assessed cell growth and apoptosis of breast cancer cells after radiation using high-content image analysis. RESULTS. HJURP was expressed at higher level in breast cancer than in normal breast tissue. HJURP mRNA levels were significantly associated with estrogen receptor (ER), progesterone receptor (PR), Scarff-Bloom-Richardson (SBR) grade, age and Ki67 proliferation indices, but not with pathologic stage, ERBB2, tumor size, or lymph node status. Higher HJURP mRNA levels significantly decreased disease-free and overall survival. HJURP mRNA levels predicted the prognosis better than Ki67 proliferation indices. In a multivariate Cox proportional-hazard regression, including clinical variables as covariates, HJURP mRNA levels remained an independent prognostic factor for disease-free and overall survival. In addition HJURP mRNA levels were an independent prognostic factor over molecular subtypes (normal like, luminal, Erbb2 and basal). Poor clinical outcomes among patients with high HJURP expression were validated in five additional breast cancer cohorts. Furthermore, the patients with high HJURP levels were much more sensitive to radiotherapy. In vitro studies in breast cancer cell lines showed that cells with high HJURP levels were more sensitive to radiation treatment and had a higher rate of apoptosis than those with low levels. Knock down of HJURP in human breast cancer cells using shRNA reduced the sensitivity to radiation treatment. HJURP mRNA levels were significantly correlated with CENPA mRNA levels. CONCLUSIONS. HJURP mRNA level is a prognostic factor for disease-free and overall survival in patients with breast cancer and is a predictive biomarker for sensitivity to radiotherapy.National Institutes of Health, National Cancer Institute (R01 CA116481, P50 CA 5820, P30 CA 82103, U54 CA 112970); Office of Science; U.S. Department of Energy Office of Science, Office of Biological & Environmental Research (DE-AC02-05CH11231

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes

    Limb development genes underlie variation in human fingerprint patterns

    Get PDF
    Fingerprints are of long-standing practical and cultural interest, but little is known about the mechanisms that underlie their variation. Using genome-wide scans in Han Chinese cohorts, we identified 18 loci associated with fingerprint type across the digits, including a genetic basis for the long-recognized “pattern-block” correlations among the middle three digits. In particular, we identified a variant near EVI1 that alters regulatory activity and established a role for EVI1 in dermatoglyph patterning in mice. Dynamic EVI1 expression during human development supports its role in shaping the limbs and digits, rather than influencing skin patterning directly. Trans-ethnic meta-analysis identified 43 fingerprint-associated loci, with nearby genes being strongly enriched for general limb development pathways. We also found that fingerprint patterns were genetically correlated with hand proportions. Taken together, these findings support the key role of limb development genes in influencing the outcome of fingerprint patterning

    West Nile Virus Experimental Evolution in vivo and the Trade-off Hypothesis

    Get PDF
    In nature, arthropod-borne viruses (arboviruses) perpetuate through alternating replication in vertebrate and invertebrate hosts. The trade-off hypothesis proposes that these viruses maintain adequate replicative fitness in two disparate hosts in exchange for superior fitness in one host. Releasing the virus from the constraints of a two-host cycle should thus facilitate adaptation to a single host. This theory has been addressed in a variety of systems, but remains poorly understood. We sought to determine the fitness implications of alternating host replication for West Nile virus (WNV) using an in vivo model system. Previously, WNV was serially or alternately passed 20 times in vivo in chicks or mosquitoes and resulting viruses were characterized genetically. In this study, these test viruses were competed in vivo in fitness assays against an unpassed marked reference virus. Fitness was assayed in chicks and in two important WNV vectors, Culex pipiens and Culex quinquefasciatus. Chick-specialized virus displayed clear fitness gains in chicks and in Cx. pipiens but not in Cx. quinquefasciatus. Cx. pipiens-specialized virus experienced reduced fitness in chicks and little change in either mosquito species. These data suggest that when fitness is measured in birds the trade-off hypothesis is supported; but in mosquitoes it is not. Overall, these results suggest that WNV evolution is driven by alternate cycles of genetic expansion in mosquitoes, where purifying selection is weak and genetic diversity generated, and restriction in birds, where purifying selection is strong
    corecore