51 research outputs found

    Methyl (2′S,3′S)-3,4-O-(2′,3′-dimethoxy­butane-2′,3′-di­yl)-α-l-rhamnopyran­oside: a glycosyl acceptor

    Get PDF
    The title compound, C13H24O7, is the product of the ketalization of methyl l-(+)-rhamnopyran­oside with 2,3-butane­dione. It crystallizes with two mol­ecules in the asymmetric unit, which are connected by O—H⋯O hydrogen bonds. The C-3,4 diequatorial hydroxy groups of the methyl l-(+)-rhamnopyran­oside were protected, leaving the C-2 hydroxy group free. The l-(+)-rhamnopyran­oside and 2′,3′-dimethoxy­butane-2′,3′-diyl rings adopt chair conformations and all meth­oxy groups are in axial positions. The absolute configuration was assumed from the synthesis

    Thalamocortical Inputs Show Post-Critical-Period Plasticity

    Get PDF
    SummaryExperience-dependent plasticity in the adult brain has clinical potential for functional rehabilitation following central and peripheral nerve injuries. Here, plasticity induced by unilateral infraorbital (IO) nerve resection in 4-week-old rats was mapped using MRI and synaptic mechanisms were elucidated by slice electrophysiology. Functional MRI demonstrates a cortical potentiation compared to thalamus 2 weeks after IO nerve resection. Tracing thalamocortical (TC) projections with manganese-enhanced MRI revealed circuit changes in the spared layer 4 (L4) barrel cortex. Brain slice electrophysiology revealed TC input strengthening onto L4 stellate cells due to an increase in postsynaptic strength and the number of functional synapses. This work shows that the TC input is a site for robust plasticity after the end of the previously defined critical period for this input. Thus, TC inputs may represent a major site for adult plasticity in contrast to the consensus that adult plasticity mainly occurs at cortico-cortical connections

    Adhesion of volcanic ash particles under controlled conditions and implications for their deposition in gas turbines

    Get PDF
    A particular (representative) type of ash has been used in this study, having a particle size range of ~10-70 µm. Experimental particle adhesion rate data are considered in conjunction with CFD modeling of particle velocities and temperatures. This ash becomes soft above ~700˚C and it has been confirmed that a sharp increase is observed in the likelihood of adhesion as particle temperatures move into this range. Particle size is important and those in the approximate range 10-30 µm are most likely to adhere. This corresponds fairly closely with the size range that is most likely to enter a combustion chamber and turbine.This work forms part of a research programme funded by EPSRC (EP/K027530/1). In conjunction with this project, a consortium of partners has been set up under the PROVIDA ("PROtection against Volcanic ash Induced Damage in Aeroengines") banner and information about its operation is available at http://www.ccg.msm.cam.ac.uk/initiatives/provida. The invaluable assistance of Kevin Roberts (Materials Department in Cambridge) with operation of the plasma spray facility is gratefully acknowledged. The authors are also grateful to Dr. Margaret Hartley, of the University of Manchester, for kindly collecting the Laki ash (and several other types) during field trips to Iceland, which were funded by EasyJet.This is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1002/adem.201500371 In compliance with current EPSRC requirements, input data for the modelling described in this paper, including meshing and boundary condition specifications, are available at the following URL: www.ccg.msm.cam.ac.uk/publications/resources. These files can be downloaded and used in COMSOL Multiphysics packages. Data supplied are for a representative case

    PPI

    No full text

    GLM

    No full text

    Mediation analysis

    No full text

    Distinct cerebral coherence in task-based fMRI hyperscanning: cooperation vs. competition

    No full text
    https://www.biorxiv.org/content/10.1101/2021.07.21.452832v

    Comparison of fMRI BOLD response patterns by electrical stimulation of the ventroposterior complex and medial thalamus of the rat.

    Get PDF
    The objective of this study was to compare the functional connectivity of the lateral and medial thalamocortical pain pathways by investigating the blood oxygen level-dependent (BOLD) activation patterns in the forebrain elicited by direct electrical stimulation of the ventroposterior (VP) and medial (MT) thalamus. An MRI-compatible stimulation electrode was implanted in the VP or MT of α-chloralose-anesthetized rats. Electrical stimulation was applied to the VP or MT at various intensities (50 µA to 300 µA) and frequencies (1 Hz to 12 Hz). BOLD responses were analyzed in the ipsilateral forelimb region of the primary somatosensory cortex (iS1FL) after VP stimulation and in the ipsilateral cingulate cortex (iCC) after MT stimulation. When stimulating the VP, the strongest activation occurred at 3 Hz. The stimulation intensity threshold was 50 µA and the response rapidly peaked at 100 µA. When stimulating the MT, The optimal frequency for stimulation was 9 Hz or 12 Hz, the stimulation intensity threshold was 100 µA and we observed a graded increase in the BOLD response following the application of higher intensity stimuli. We also evaluated c-Fos expression following the application of a 200-µA stimulus. Ventroposterior thalamic stimulation elicited c-Fos-positivity in few cells in the iS1FL and caudate putamen (iCPu). Medial thalamic stimulation, however, produced numerous c-Fos-positive cells in the iCC and iCPu. The differential BOLD responses and c-Fos expressions elicited by VP and MT stimulation indicate differences in stimulus-response properties of the medial and lateral thalamic pain pathways
    corecore