3,792 research outputs found

    Reduced Barrier for Ion Migration in Mixed-Halide Perovskites.

    Get PDF
    Halide alloying in metal halide perovskites is a useful tool for optoelectronic applications requiring a specific bandgap. However, mixed-halide perovskites show ion migration in the perovskite layer, leading to phase segregation and reducing the long-term stability of the devices. Here, we study the ion migration process in methylammonium-based mixed-halide perovskites with varying ratios of bromide to iodide. We find that the mixed-halide perovskites show two separate halide migration processes, in contrast to pure-phase perovskites, which show only a unique halide migration component. Compared to pure-halide perovskites, these processes have lower activation energies, facilitating ion migration in mixed versus pure-phase perovskites, and have a higher density of mobile ions. Under illumination, we find that the concentration of mobile halide ions is further increased and notice the emergence of a migration process involving methylammonium cations. Quantifying the ion migration processes in mixed-halide perovskites shines light on the key parameters allowing the design of bandgap-tunable perovskite solar cells with long-term stability

    Competition between reverse water gas shift reaction and methanol synthesis from CO 2 : influence of copper particle size

    Get PDF
    Converting CO2 into value-added chemicals and fuels, such as methanol, is a promising approach to limit the environmental impact of human activities. Conventional methanol synthesis catalysts have shown limited efficiency and poor stability in a CO2/H2 mixture. To design improved catalysts, crucial for the effective utilization of CO2, an in-depth understanding of the active sites and reaction mechanism is desired. The catalytic performance of a series of carbon-supported Cu catalysts, with Cu particle sizes in the range of 5 to 20 nm, was evaluated under industrially relevant temperature and pressure, i.e. 260 °C and 40 bar(g). The CO2 hydrogenation reaction exhibited clear particle size effects up to 13 nm particles, with small nanoparticles having the lower activity, but higher methanol selectivity. MeOH and CO formation showed a different size-dependence. The TOFCO increased from 1.9 × 10−3 s−1 to 9.4 × 10−3 s−1 with Cu size increasing from 5 nm to 20 nm, while the TOFMeOH was size-independent (8.4 × 10−4 s−1 on average). The apparent activation energies for MeOH and CO formation were size-independent with values of 63 ± 7 kJ mol−1 and 118 ± 6 kJ mol−1, respectively. Hence the size dependence was ascribed to a decrease in the fraction of active sites suitable for CO formation with decreasing particle size. Theoretical models and DFT calculations showed that the origin of the particle size effect is most likely related to the differences in formate coverage for different Cu facets whose abundancy depends on particle size. Hence, the CO2 hydrogenation reaction is intrinsically sensitive to the Cu particle size

    Unconventional Gas and the European Union: Prospects and Challenges for Competitiveness

    Full text link
    This article studies the likely impact of unconventional gas developments in the U.S. on EU competitiveness. We find, first of all, little evidence for a prosperous unconventional gas development in Europe. Second, the U.S. boom has already a strong impact on both world and European energy markets. In particular, lower U.S. gas and coal prices have changed relative energy prices both at home and abroad. Finally, competitiveness impacts in some (sub)sectors will be considerable. These impacts are not only related to production based on gas use as a feedstock but also on the byproducts' from unconventional gas production, such as ethylene, propane and butane. However, several indirect impacts, such as lower coal import prices, may soften the adverse competitiveness impact in the EU

    Geminal Diol of Dihydrolevoglucosenone as a Switchable Hydrotrope : A Continuum of Green Nanostructured Solvents

    Get PDF
    The addition of water to dihydrolevoglucosenone (Cyrene) creates a solvent mixture with highly unusual properties and the ability to specifically and efficiently solubilize a wide range of organic compounds, notably, aspirin, ibuprofen, salicylic acid, ferulic acid, caffeine, and mandelic acid. The observed solubility enhancement (up to 100-fold) can be explained only by the existence of microenvironments mainly centered on Cyrene's geminal diol. Surprisingly, the latter acts as a reversible hydrotrope and regulates the polarity of the created complex mixture. The possibility to tune the polarity of the solvent mixture through the addition of water, and the subsequent generation of variable amounts of Cyrene's geminal diol, creates a continuum of green solvents with controllable solubilization properties. The effective presence of microheterogenieties in the Cyrene/water mixture was adequately proven by (1) Fourier transform infrared/density functional theory showing Cyrene dimerization, (2) electrospray mass-spectrometry demonstrating the existence of dimers of Cyrene's geminal diol, and (3) the variable presence of single or multiple tetramethylsilane peaks in the 1 H NMR spectra of a range of Cyrene/water mixtures. The Cyrene-water solvent mixture is importantly not mutagenic, barely ecotoxic, bioderived, and endowed with tunable hydrophilic/hydrophobic properties

    MYO5B, STX3, and STXBP2 mutations reveal a common disease mechanism that unifies a subset of congenital diarrheal disorders:A mutation update

    Get PDF
    Microvillus inclusion disease (MVID) is a rare but fatal autosomal recessive congenital diarrheal disorder caused by MYO5B mutations. In 2013, we launched an open-access registry for MVID patients and their MYO5B mutations (www.mvid-central.org). Since then, additional unique MYO5B mutations have been identified in MVID patients, but also in non-MVID patients. Animal models have been generated that formally prove the causality between MYO5B and MVID. Importantly, mutations in two other genes, STXBP2 and STX3, have since been associated with variants of MVID, shedding new light on the pathogenesis of this congenital diarrheal disorder. Here, we review these additional genes and their mutations. Furthermore, we discuss recent data from cell studies that indicate that the three genes are functionally linked and, therefore, may constitute a common disease mechanism that unifies a subset of phenotypically linked congenital diarrheal disorders. We present new data based on patient material to support this. To congregate existing and future information on MVID geno-/phenotypes, we have updated and expanded the MVID registry to include all currently known MVID-associated gene mutations, their demonstrated or predicted functional consequences, and associated clinical information.</p

    Vps3 and Vps8 control integrin trafficking from early to recycling endosomes and regulate integrin-dependent functions

    Get PDF
    Recycling endosomes maintain plasma membrane homeostasis and are important for cell polarity, migration, and cytokinesis. Yet, the molecular machineries that drive endocytic recycling remain largely unclear. The CORVET complex is a multi-subunit tether required for fusion between early endosomes. Here we show that the CORVET-specific subunits Vps3 and Vps8 also regulate vesicular transport from early to recycling endosomes. Vps3 and Vps8 localise to Rab4-positive recycling vesicles and co-localise with the CHEVI complex on Rab11-positive recycling endosomes. Depletion of Vps3 or Vps8 does not affect transferrin recycling, but delays the delivery of internalised integrins to recycling endosomes and their subsequent return to the plasma membrane. Consequently, Vps3/8 depletion results in defects in integrin-dependent cell adhesion and spreading, focal adhesion formation, and cell migration. These data reveal a role for Vps3 and Vps8 in a specialised recycling pathway important for integrin trafficking

    On the electronic structure of electron doped LaOFeAs as seen by X-ray absorption spectroscopy

    Full text link
    We investigated the recently found superconductor LaO_{1-x}F_xFeAs by X-ray absorption spectroscopy (XAS). From a comparison of the O K-edge with LDA calculations we find good agreement and are able to explain the structure and changes of the spectra with electron doping. An important result from this edge is a limitation of the Hubbard U to values not significantly larger than 1 eV. From experimental Fe L_2,3-edge spectra and charge transfer multiplet calculations we gain further information on important physical values such as hopping parameters, the charge transfer energy Delta, and the on-site Hubbard U. Furthermore we find the system to be very covalent with a large amount of ligand holes. A shift in the chemical potential is visible in the O K- and Fe L_2,3-edge spectra which emphasizes the importance of band effects in these compounds.Comment: 4 pages, 2 figure

    Anisotropy of 4f states in 3d-4f single-molecule magnets

    Get PDF
    We have measured angular-dependent fluorescence-yield x-ray magnetic circular dichroism spectra on single crystals of the heterometallic 3d-4f 12-metallacrown-4 TbMn4 and DyMn4 complexes. Simulated spectra using crystal-field multiplet calculations reproduce the experimentally observed spectra. The orientation of the molecules causes linear dichroism spectra of the 4f absorption spectra. This natural linear dichroism shows the anisotropic charge distribution of the rare-earth 4f state in the tetragonal crystal field despite the small 4f crystal-field splitting. The magnetic moment of the molecule is dominated by the rare-earth moment revealing a considerably large contribution of orbital moment. From a sum-rule analysis of experimental and simulated x-ray magnetic circular dichroism, we determined corrected spin and orbital Dy moments at low temperature (14 K) within a magnetic field of 7 T. We find a significant angular dependence of the Dy magnetic moments, indicating the presence of fourth-order magnetic anisotropy

    1/3-Octave Analysis of Core/Combustor-Noise Measurements for the DGEN Aeropropulsion Research Turbofan with Application to Noise Prediction

    Get PDF
    This work continues the analysis of data obtained during a 2017 NASA DGEN Aeropropulsion Research Turbofan (DART) core/combustor-noise baseline test in the NASA GRC Aero-Acoustic Propulsion Laboratory (AAPL). The DART is a cost-efficient testbed for the study of core-noise physics and mitigation. Acoustic data were simultaneously acquired using the AAPL overhead microphone array in the engine aft-quadrant farfield, a single midfield microphone, and two infinite-tube-probe sensors for unsteady pressures at the core-nozzle exit. The data are here examined on an 1/3-octave basis as a first step in extending and improving core-noise prediction capability

    Unravelling structure sensitivity in CO2 hydrogenation over nickel

    Get PDF
    Continuous efforts in the field of materials science have allowed us to generate smaller and smaller metal nanoparticles, creating new opportunities to understand catalytic properties that depend on the metal particle size. Structure sensitivity is the phenomenon where not all surface atoms in a supported metal catalyst have the same activity. Understanding structure sensitivity can assist in the rational design of catalysts, allowing control over mechanisms, activity and selectivity, and thus even the viability of a catalytic reaction. Here, using a unique set of well-defined silica-supported Ni nanoclusters (1–7 nm) and advanced characterization methods, we prove how structure sensitivity influences the mechanism of catalytic CO2 reduction, the nature of which has been long debated. These findings bring fundamental new understanding of CO2 hydrogenation over Ni and allow us to control both activity and selectivity, which can be a means for CO2 emission abatement through its valorization as a low- or even negative-cost feedstock on a low-cost transition-metal catalyst
    • …
    corecore