111 research outputs found
Fine tuning of plasmid design to generate tailored CHO cell lines for production of bi- and multispecifics
Please click Additional Files below to see the full abstract
Recommended from our members
Meet Dr. Joachim Frank, Nobel Laureate
Our editors Vikas Chelur CC’21 and Maria Trifas CC’21 interviewed Dr. Joachim Frank in December 2017. Dr. Frank is a professor in Columbia’s Biological Sciences department who recently won the Nobel Prize in Chemistry in 2017 with Jacques Dubochet and Richard Henderson for their research in cryoelectron microscopy. Here is a snippet of the interview where Professor Frank explains his research at different levels
Automatic reconstruction of 3D neuron structures using a graph-augmented deformable model
Motivation: Digital reconstruction of 3D neuron structures is an important step toward reverse engineering the wiring and functions of a brain. However, despite a number of existing studies, this task is still challenging, especially when a 3D microscopic image has low single-to-noise ratio and discontinued segments of neurite patterns
NOMPC, a Member of the TRP Channel Family, Localizes to the Tubular Body and Distal Cilium of Drosophila Campaniform and Chordotonal Receptor Cells
Mechanoreception underlies the senses of touch, hearing and balance. An early event in mechanoreception is the opening of ion channels in response to mechanical force impinging on the cell. Here, we report antibody localization of NOMPC, a member of the transient receptor potential (TRP) ion channel family, to the tubular body of campaniform receptors in the halteres and to the distal regions of the cilia of chordotonal neurons in Johnston's organ, the sound-sensing organ of flies. Because NOMPC has been shown to be associated with the mechanotransduction process, our studies suggest that the transduction apparatus in both types of sensory cells is located in regions where a specialized microtubule-based cytoskeleton is in close proximity to an overlying cuticular structure. This localization suggests a transmission route of the mechanical stimulus to the cell. Furthermore, the commonality of NOMPC locations in the two structurally different receptor types suggests a conserved transduction apparatus involving both the intracellular cytoskeleton and the extracellular matrix. © 2010 Wiley-Liss, Inc
Regulation of two motor patterns enables the gradual adjustment of locomotion strategy in Caenorhabditis elegans
In animal locomotion a tradeoff exists between stereotypy and flexibility: fast long-distance travelling (LDT) requires coherent regular motions, while local sampling and area-restricted search (ARS) rely on flexible movements. We report here on a posture control system in C. elegans that coordinates these needs. Using quantitative posture analysis we explain worm locomotion as a composite of two modes: regular undulations versus flexible turning. Graded reciprocal regulation of both modes allows animals to flexibly adapt their locomotion strategy under sensory stimulation along a spectrum ranging from LDT to ARS. Using genetics and functional imaging of neural activity we characterize the counteracting interneurons AVK and DVA that utilize FLP-1 and NLP-12 neuropeptides to control both motor modes. Gradual regulation of behaviors via this system is required for spatial navigation during chemotaxis. This work shows how a nervous system controls simple elementary features of posture to generate complex movements for goal-directed locomotion strategies
Gene Activation Using FLP Recombinase in C. elegans
The FLP enzyme catalyzes recombination between specific target sequences in DNA. Here we use FLP to temporally and spatially control gene expression in the nematode C. elegans. Transcription is blocked by the presence of an “off cassette” between the promoter and the coding region of the desired product. The “off cassette” is composed of a transcriptional terminator flanked by FLP recognition targets (FRT). This sequence can be excised by FLP recombinase to bring together the promoter and the coding region. We have introduced two fluorescent reporters into the system: a red reporter for promoter activity prior to FLP expression and a green reporter for expression of the gene of interest after FLP expression. The constructs are designed using the multisite Gateway system, so that promoters and coding regions can be quickly mixed and matched. We demonstrate that heat-shock-driven FLP recombinase adds temporal control on top of tissue specific expression provided by the transgene promoter. In addition, the temporal switch is permanent, rather than acute, as is usually the case for heat-shock driven transgenes. Finally, FLP expression can be driven by a tissue specific promoter to provide expression in a subset of cells that can only be addressed as the intersection of two available promoters. As a test of the system, we have driven the light chain of tetanus toxin, a protease that cleaves the synaptic vesicle protein synaptobrevin. We show that we can use this to inactivate synaptic transmission in all neurons or a subset of neurons in a FLP-dependent manner
Genome-Wide Analysis of Light- and Temperature-Entrained Circadian Transcripts in Caenorhabditis elegans
Transcriptional profiling experiments identify light- and temperature-entrained circadian transcripts in C. elegans
- …