113 research outputs found

    Tackling the jelly web: Trophic ecology of gelatinous zooplankton in oceanic food webs of the eastern tropical Atlantic assessed by stable isotope analysis

    Get PDF
    Gelatinous zooplankton can be present in high biomass and taxonomic diversity in planktonic oceanic food webs, yet the trophic structuring and importance of this “jelly web” remain incompletely understood. To address this knowledge gap, we provide a holistic trophic characterization of a jelly web in the eastern tropical Atlantic, based on δ13C and δ15N stable isotope analysis of a unique gelatinous zooplankton sample set. The jelly web covered most of the isotopic niche space of the entire planktonic oceanic food web, spanning > 3 trophic levels, ranging from herbivores (e.g., pyrosomes) to higher predators (e.g., ctenophores), highlighting the diverse functional roles and broad possible food web relevance of gelatinous zooplankton. Among gelatinous zooplankton taxa, comparisons of isotopic niches pointed to the presence of differentiation and resource partitioning, but also highlighted the potential for competition, e.g., between hydromedusae and siphonophores. Significant differences in spatial (seamount vs. open ocean) and depth‐resolved patterns (0–400 m vs. 400–1000 m) pointed to additional complexity, and raise questions about the extent of connectivity between locations and differential patterns in vertical coupling between gelatinous zooplankton groups. Added complexity also resulted from inconsistent patterns in trophic ontogenetic shifts among groups. We conclude that the broad trophic niche covered by the jelly web, patterns in niche differentiation within this web, and substantial complexity at the spatial, depth, and taxon level call for a more careful consideration of gelatinous zooplankton in oceanic food web models. In light of climate change and fishing pressure, the data presented here also provide a valuable baseline against which to measure future trophic observations of gelatinous zooplankton communities in the eastern tropical Atlantic

    Global Governance Behind Closed Doors : The IMF Boardroom, the Enhanced Structural Adjustment Facility, and the Intersection of Material Power and Norm Change in Global Politics

    Get PDF
    Up on the 12th floor of its 19th Street Headquarters, the IMF Board sits in active session for an average of 7 hours per week. Although key matters of policy are decided on in the venue, the rules governing Boardroom interactions remain opaque, resting on an uneasy combination of consensual decision-making and weighted voting. Through a detailed analysis of IMF Board discussions surrounding the Enhanced Structural Adjustment Facility (ESAF), this article sheds light on the mechanics of power in this often overlooked venue of global economic governance. By exploring the key issues of default liability and loan conditionality, I demonstrate that whilst the Boardroom is a more active site of contestation than has hitherto been recognized, material power is a prime determinant of both Executive Directors’ preferences and outcomes reached from discussions. And as the decisions reached form the backbone of the ‘instruction sheet’ used by Fund staff to guide their everyday operational decisions, these outcomes—and the processes through which they were reached—were factors of primary importance in stabilizing the operational norms at the heart of a controversial phase in the contemporary history of IMF concessional lending

    Chemotactic response and adaptation dynamics in Escherichia coli

    Get PDF
    Adaptation of the chemotaxis sensory pathway of the bacterium Escherichia coli is integral for detecting chemicals over a wide range of background concentrations, ultimately allowing cells to swim towards sources of attractant and away from repellents. Its biochemical mechanism based on methylation and demethylation of chemoreceptors has long been known. Despite the importance of adaptation for cell memory and behavior, the dynamics of adaptation are difficult to reconcile with current models of precise adaptation. Here, we follow time courses of signaling in response to concentration step changes of attractant using in vivo fluorescence resonance energy transfer measurements. Specifically, we use a condensed representation of adaptation time courses for efficient evaluation of different adaptation models. To quantitatively explain the data, we finally develop a dynamic model for signaling and adaptation based on the attractant flow in the experiment, signaling by cooperative receptor complexes, and multiple layers of feedback regulation for adaptation. We experimentally confirm the predicted effects of changing the enzyme-expression level and bypassing the negative feedback for demethylation. Our data analysis suggests significant imprecision in adaptation for large additions. Furthermore, our model predicts highly regulated, ultrafast adaptation in response to removal of attractant, which may be useful for fast reorientation of the cell and noise reduction in adaptation.Comment: accepted for publication in PLoS Computational Biology; manuscript (19 pages, 5 figures) and supplementary information; added additional clarification on alternative adaptation models in supplementary informatio

    Structural basis of nuclear import of flap endonuclease 1 (FEN1)

    Get PDF
    Flap endonuclease 1 (FEN1) is a member of the nuclease family and is structurally conserved from bacteriophages to humans. This protein is involved in multiple DNA-processing pathways, including Okazaki fragment maturation, stalled replication-fork rescue, telomere maintenance, long-patch base-excision repair and apoptotic DNA fragmentation. FEN1 has three functional motifs that are responsible for its nuclease, PCNA-interaction and nuclear localization activities, respectively. It has been shown that the C-terminal nuclear localization sequence (NLS) facilitates nuclear localization of the enzyme during the S phase of the cell cycle and in response to DNA damage. To determine the structural basis of the recognition of FEN1 by the nuclear import receptor importin alpha, the crystal structure of the complex of importin alpha with a peptide corresponding to the FEN1 NLS was solved. Structural studies confirmed the binding of the FEN1 NLS as a classical bipartite NLS; however, in contrast to the previously proposed (KRKX8KKK367)-K-354 sequence, it is the (354)KRX(10)KKAK(369) sequence that binds to importin alpha. This result explains the incomplete inhibition of localization that was observed on mutating residues (KKK367)-K-365. Acidic and polar residues in the X-10 linker region close to the basic clusters play an important role in binding to importin alpha. These results suggest that the basic residues in the N-terminal basic cluster of bipartite NLSs may play roles that are more critical than those of the many basic residues in the C-terminal basic cluster

    Otx2 Gene Deletion in Adult Mouse Retina Induces Rapid RPE Dystrophy and Slow Photoreceptor Degeneration

    Get PDF
    International audienceBACKGROUND: Many developmental genes are still active in specific tissues after development is completed. This is the case for the homeobox gene Otx2, an essential actor of forebrain and head development. In adult mouse, Otx2 is strongly expressed in the retina. Mutations of this gene in humans have been linked to severe ocular malformation and retinal diseases. It is, therefore, important to explore its post-developmental functions. In the mature retina, Otx2 is expressed in three cell types: bipolar and photoreceptor cells that belong to the neural retina and retinal pigment epithelium (RPE), a neighbour structure that forms a tightly interdependent functional unit together with photoreceptor cells. METHODOLOGY/PRINCIPAL FINDINGS: Conditional self-knockout was used to address the late functions of Otx2 gene in adult mice. This strategy is based on the combination of a knock-in CreERT2 allele and a floxed allele at the Otx2 locus. Time-controlled injection of tamoxifen activates the recombinase only in Otx2 expressing cells, resulting in selective ablation of the gene in its entire domain of expression. In the adult retina, loss of Otx2 protein causes slow degeneration of photoreceptor cells. By contrast, dramatic changes of RPE activity rapidly occur, which may represent a primary cause of photoreceptor disease. CONCLUSIONS: Our novel mouse model uncovers new Otx2 functions in adult retina. We show that this transcription factor is necessary for long-term maintenance of photoreceptors, likely through the control of specific activities of the RPE

    Large-Scale Discovery and Characterization of Protein Regulatory Motifs in Eukaryotes

    Get PDF
    The increasing ability to generate large-scale, quantitative proteomic data has brought with it the challenge of analyzing such data to discover the sequence elements that underlie systems-level protein behavior. Here we show that short, linear protein motifs can be efficiently recovered from proteome-scale datasets such as sub-cellular localization, molecular function, half-life, and protein abundance data using an information theoretic approach. Using this approach, we have identified many known protein motifs, such as phosphorylation sites and localization signals, and discovered a large number of candidate elements. We estimate that ∼80% of these are novel predictions in that they do not match a known motif in both sequence and biological context, suggesting that post-translational regulation of protein behavior is still largely unexplored. These predicted motifs, many of which display preferential association with specific biological pathways and non-random positioning in the linear protein sequence, provide focused hypotheses for experimental validation

    The Human Gonadotropin Releasing Hormone Type I Receptor Is a Functional Intracellular GPCR Expressed on the Nuclear Membrane

    Get PDF
    The mammalian type I gonadotropin releasing hormone receptor (GnRH-R) is a structurally unique G protein-coupled receptor (GPCR) that lacks cytoplasmic tail sequences and displays inefficient plasma membrane expression (PME). Compared to its murine counterparts, the primate type I receptor is inefficiently folded and retained in the endoplasmic reticulum (ER) leading to a further reduction in PME. The decrease in PME and concomitant increase in intracellular localization of the mammalian GnRH-RI led us to characterize the spatial distribution of the human and mouse GnRH receptors in two human cell lines, HEK 293 and HTR-8/SVneo. In both human cell lines we found the receptors were expressed in the cytoplasm and were associated with the ER and nuclear membrane. A molecular analysis of the receptor protein sequence led us to identify a putative monopartite nuclear localization sequence (NLS) in the first intracellular loop of GnRH-RI. Surprisingly, however, neither the deletion of the NLS nor the addition of the Xenopus GnRH-R cytoplasmic tail sequences to the human receptor altered its spatial distribution. Finally, we demonstrate that GnRH treatment of nuclei isolated from HEK 293 cells expressing exogenous GnRH-RI triggers a significant increase in the acetylation and phosphorylation of histone H3, thereby revealing that the nuclear-localized receptor is functional. Based on our findings, we conclude that the mammalian GnRH-RI is an intracellular GPCR that is expressed on the nuclear membrane. This major and novel discovery causes us to reassess the signaling potential of this physiologically and clinically important receptor

    Clusters of Basic Amino Acids Contribute to RNA Binding and Nucleolar Localization of Ribosomal Protein L22

    Get PDF
    The ribosomal protein L22 is a component of the 60S eukaryotic ribosomal subunit. As an RNA-binding protein, it has been shown to interact with both cellular and viral RNAs including 28S rRNA and the Epstein-Barr virus encoded RNA, EBER-1. L22 is localized to the cell nucleus where it accumulates in nucleoli. Although previous studies demonstrated that a specific amino acid sequence is required for nucleolar localization, the RNA-binding domain has not been identified. Here, we investigated the hypothesis that the nucleolar accumulation of L22 is linked to its ability to bind RNA. To address this hypothesis, mutated L22 proteins were generated to assess the contribution of specific amino acids to RNA binding and protein localization. Using RNA-protein binding assays, we demonstrate that basic amino acids 80–93 are required for high affinity binding of 28S rRNA and EBER-1 by L22. Fluorescence localization studies using GFP-tagged mutated L22 proteins further reveal that basic amino acids 80–93 are critical for nucleolar accumulation and for incorporation into ribosomes. Our data support the growing consensus that the nucleolar accumulation of ribosomal proteins may not be mediated by a defined localization signal, but rather by specific interaction with established nucleolar components such as rRNA

    Stage T1c prostate cancer: defining the appropriate staging evaluation and the role for pelvic lymphadenectomy

    Full text link
    A good staging system should be able to accurately reflect the natural history of a malignant disease, to express the extent of the disease at the time of diagnosis, and stratify patients in prognostically distinctive groups. The staging system for prostate cancer, as it is today, fails to fulfill these requirements. Approximately one third of the patients who undergo surgery for complete excision of prostate cancer in fact do not have a localize disease. The incidence of tumor at the inked margin may reach 30% for T1 stage and up to 60% for clinical T2b prostate cancer according to comparision with pathologic examination of resected specimen. Several concepts have been recently proposed as a means of improving the accuracy of the available staging system. In this paper, we review current aspects of clinical and pathological staging of prostate cancer, and the importance of these new concepts on the early stages of prostate cancer.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47057/1/345_2005_Article_BF01300182.pd

    Jellyfish decomposition at the seafloor rapidly alters biogeochemical cycling and carbon flow through benthic food-webs

    Get PDF
    Jellyfish blooms have increased in magnitude in several locations around the world, including in fjords.While the factors that promote jellyfish blooms and the impacts of live blooms on marine ecosystems areoften investigated, the post-bloom effects from the sinking and accumulation of dead jellyfish at the seafloorremain poorly known. Here, we quantified the effect of jellyfish deposition on short-term benthic carboncycling dynamics in benthic cores taken from a cold and deep fjord environment. Respiration was measuredand 13C-labeled algae were used as a tracer to quantify how C-flow through the benthic food web wasaffected over 5 d in the presence and absence of jellyfish carcasses. Benthic respiration rates increased rapidly(within 2 h) in the jellyfish-amended cores, and were significantly higher than cores that were supplied withonly labeled phytodetritus between 17 h and 117 h. In the cores that were supplied with only labeled phytodetritus,macrofauna dominated algal-C uptake over the 5 d study. The addition of jellyfish caused a rapidand significant shift in C-uptake dynamics: macrofaunal C-uptake decreased while bacterial C-uptakeincreased relative to the cores supplied with only phytodetritus. Our results suggest that the addition of jellyfishdetritus to the seafloor can rapidly alter benthic biogeochemical cycling, and substantially modify C-flowthrough benthic communities. If our results are representative for other areas, they suggest that jellyfishblooms may have cascading effects for benthic ecosystem functions and services when blooms senesce, suchas enhanced bacterial metabolism and reduced energy transfer to upper trophic levels
    corecore