332 research outputs found

    Shear coordinate description of the quantised versal unfolding of D_4 singularity

    Full text link
    In this paper by using Teichmuller theory of a sphere with four holes/orbifold points, we obtain a system of flat coordinates on the general affine cubic surface having a D_4 singularity at the origin. We show that the Goldman bracket on the geodesic functions on the four-holed/orbifold sphere coincides with the Etingof-Ginzburg Poisson bracket on the affine D_4 cubic. We prove that this bracket is the image under the Riemann-Hilbert map of the Poisson Lie bracket on the direct sum of three copies of sl_2. We realise the action of the mapping class group by the action of the braid group on the geodesic functions . This action coincides with the procedure of analytic continuation of solutions of the sixth Painlev\'e equation. Finally, we produce the explicit quantisation of the Goldman bracket on the geodesic functions on the four-holed/orbifold sphere and of the braid group action.Comment: 14 pages, 2 picture

    Two-logarithm matrix model with an external field

    Full text link
    We investigate the two-logarithm matrix model with the potential XΛ+αlog(1+X)+βlog(1X)X\Lambda+\alpha\log(1+X)+\beta\log(1-X) related to an exactly solvable Kazakov-Migdal model. In the proper normalization, using Virasoro constraints, we prove the equivalence of this model and the Kontsevich-Penner matrix model and construct the 1/N-expansion solution of this model.Comment: 15pp., LaTeX, no figures, reference adde

    Topological expansion of beta-ensemble model and quantum algebraic geometry in the sectorwise approach

    Get PDF
    We solve the loop equations of the β\beta-ensemble model analogously to the solution found for the Hermitian matrices β=1\beta=1. For \beta=1,thesolutionwasexpressedusingthealgebraicspectralcurveofequation, the solution was expressed using the algebraic spectral curve of equation y^2=U(x).Forarbitrary. For arbitrary \beta,thespectralcurveconvertsintoaSchro¨dingerequation, the spectral curve converts into a Schr\"odinger equation ((\hbar\partial)^2-U(x))\psi(x)=0with with \hbar\propto (\sqrt\beta-1/\sqrt\beta)/N.Thispaperissimilartothesisterpaper I,inparticular,allthemainingredientsspecificforthealgebraicsolutionoftheproblemremainthesame,butherewepresentthesecondapproachtofindingasolutionofloopequationsusingsectorwisedefinitionofresolvents.Beingtechnicallymoreinvolved,itallowsdefiningconsistentlytheBcyclestructureoftheobtainedquantumalgebraiccurve(aDmoduleoftheform. This paper is similar to the sister paper~I, in particular, all the main ingredients specific for the algebraic solution of the problem remain the same, but here we present the second approach to finding a solution of loop equations using sectorwise definition of resolvents. Being technically more involved, it allows defining consistently the B-cycle structure of the obtained quantum algebraic curve (a D-module of the form y^2-U(x),where, where [y,x]=\hbar)andtoconstructexplicitlythecorrelationfunctionsandthecorrespondingsymplecticinvariants) and to construct explicitly the correlation functions and the corresponding symplectic invariants F_h,orthetermsofthefreeenergy,in1/N2, or the terms of the free energy, in 1/N^2-expansion at arbitrary \hbar. The set of "flat" coordinates comprises the potential times tkt_k and the occupation numbers \widetilde{\epsilon}_\alpha.WedefineandinvestigatethepropertiesoftheAandBcycles,formsof1st,2ndand3rdkind,andtheRiemannbilinearidentities.Weusetheseidentitiestofindexplicitlythesingularpartof. We define and investigate the properties of the A- and B-cycles, forms of 1st, 2nd and 3rd kind, and the Riemann bilinear identities. We use these identities to find explicitly the singular part of \mathcal F_0thatdependsexclusivelyon that depends exclusively on \widetilde{\epsilon}_\alpha$.Comment: 58 pages, 7 figure

    Effective Action and Measure in Matrix Model of IIB Superstrings

    Full text link
    We calculate an effective action and measure induced by the integration over the auxiliary field in the matrix model recently proposed to describe IIB superstrings. It is shown that the measure of integration over the auxiliary matrix is uniquely determined by locality and reparametrization invariance of the resulting effective action. The large--NN limit of the induced measure for string coordinates is discussed in detail. It is found to be ultralocal and, thus, possibly is irrelevant in the continuum limit. The model of the GKM type is considered in relation to the effective action problem.Comment: 9pp., Latex; v2: the discussion of the large N limit of the induced measure is substantially expande

    Cut-and-Join operator representation for Kontsevich-Witten tau-function

    Full text link
    In this short note we construct a simple cut-and-join operator representation for Kontsevich-Witten tau-function that is the partition function of the two-dimensional topological gravity. Our derivation is based on the Virasoro constraints. Possible applications of the obtained expression are discussed.Comment: 5 pages, minor correction

    Instantons and Merons in Matrix Models

    Get PDF
    Various branches of matrix model partition function can be represented as intertwined products of universal elementary constituents: Gaussian partition functions Z_G and Kontsevich tau-functions Z_K. In physical terms, this decomposition is the matrix-model version of multi-instanton and multi-meron configurations in Yang-Mills theories. Technically, decomposition formulas are related to representation theory of algebras of Krichever-Novikov type on families of spectral curves with additional Seiberg-Witten structure. Representations of these algebras are encoded in terms of "the global partition functions". They interpolate between Z_G and Z_K associated with different singularities on spectral Riemann surfaces. This construction is nothing but M-theory-like unification of various matrix models with explicit and representative realization of dualities.Comment: 54 page

    Large deviations of the maximal eigenvalue of random matrices

    Full text link
    We present detailed computations of the 'at least finite' terms (three dominant orders) of the free energy in a one-cut matrix model with a hard edge a, in beta-ensembles, with any polynomial potential. beta is a positive number, so not restricted to the standard values beta = 1 (hermitian matrices), beta = 1/2 (symmetric matrices), beta = 2 (quaternionic self-dual matrices). This model allows to study the statistic of the maximum eigenvalue of random matrices. We compute the large deviation function to the left of the expected maximum. We specialize our results to the gaussian beta-ensembles and check them numerically. Our method is based on general results and procedures already developed in the literature to solve the Pastur equations (also called "loop equations"). It allows to compute the left tail of the analog of Tracy-Widom laws for any beta, including the constant term.Comment: 62 pages, 4 figures, pdflatex ; v2 bibliography corrected ; v3 typos corrected and preprint added ; v4 few more numbers adde
    corecore