28 research outputs found

    Transport and Deposition of Saharan Dust Observed from Satellite Images and Ground Measurements

    Get PDF
    Haboob occurrence strongly impacts the annual variability of airborne desert dust in North Africa. In fact, more dust is raised from erodible surfaces in the early summer (monsoon) season when deep convective storms are common but soil moisture and vegetation cover are low. On 27 June 2018, a large dust storm is initiated over North Africa associated with an intensive westward dust transport. Far away from emission sources, dust is transported over the Atlantic for the long distance. Dust plume is emitted by a strong surface wind and further becomes a type of haboob when it merges with the southwestward deep convective system in central Mali at 0200 UTC (27 June). We use satellite observations to describe and estimate the dust mass concentration during the event. Approximately 93% of emitted dust is removed the dry deposition from the atmosphere between sources (10°N–25°N; 1°W–8°E) and the African coast (6°N–21°N; 16°W–10°W). The convective cold pool has induced large economic and healthy damages, and death of animals in the northeastern side of Senegal. ERA5 reanalysis has shown that the convective mesoscale impacts strongly the climatological location of the Saharan heat low (SHL)

    Resurgence of Ebola virus in 2021 in Guinea suggests a new paradigm for outbreaks

    Get PDF
    These authors contributed equally: Alpha K. Keita, Fara R. Koundouno, Martin Faye, Ariane Düx, Julia Hinzmann.International audienc

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance.

    Get PDF
    Investment in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing in Africa over the past year has led to a major increase in the number of sequences that have been generated and used to track the pandemic on the continent, a number that now exceeds 100,000 genomes. Our results show an increase in the number of African countries that are able to sequence domestically and highlight that local sequencing enables faster turnaround times and more-regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and illuminate the distinct dispersal dynamics of variants of concern-particularly Alpha, Beta, Delta, and Omicron-on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve while the continent faces many emerging and reemerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Socializing One Health: an innovative strategy to investigate social and behavioral risks of emerging viral threats

    Get PDF
    In an effort to strengthen global capacity to prevent, detect, and control infectious diseases in animals and people, the United States Agency for International Development’s (USAID) Emerging Pandemic Threats (EPT) PREDICT project funded development of regional, national, and local One Health capacities for early disease detection, rapid response, disease control, and risk reduction. From the outset, the EPT approach was inclusive of social science research methods designed to understand the contexts and behaviors of communities living and working at human-animal-environment interfaces considered high-risk for virus emergence. Using qualitative and quantitative approaches, PREDICT behavioral research aimed to identify and assess a range of socio-cultural behaviors that could be influential in zoonotic disease emergence, amplification, and transmission. This broad approach to behavioral risk characterization enabled us to identify and characterize human activities that could be linked to the transmission dynamics of new and emerging viruses. This paper provides a discussion of implementation of a social science approach within a zoonotic surveillance framework. We conducted in-depth ethnographic interviews and focus groups to better understand the individual- and community-level knowledge, attitudes, and practices that potentially put participants at risk for zoonotic disease transmission from the animals they live and work with, across 6 interface domains. When we asked highly-exposed individuals (ie. bushmeat hunters, wildlife or guano farmers) about the risk they perceived in their occupational activities, most did not perceive it to be risky, whether because it was normalized by years (or generations) of doing such an activity, or due to lack of information about potential risks. Integrating the social sciences allows investigations of the specific human activities that are hypothesized to drive disease emergence, amplification, and transmission, in order to better substantiate behavioral disease drivers, along with the social dimensions of infection and transmission dynamics. Understanding these dynamics is critical to achieving health security--the protection from threats to health-- which requires investments in both collective and individual health security. Involving behavioral sciences into zoonotic disease surveillance allowed us to push toward fuller community integration and engagement and toward dialogue and implementation of recommendations for disease prevention and improved health security

    Quantitative risk analysis using vulnerability indicators to assess food insecurity in the Niayes agricultural region of West Senegal

    Get PDF
    There is an increasing need to develop indicators of vulnerability and adaptive capacity to determine the robustness of response strategies over time and better understand the underlying processes. This study aimed to determine levels of risk of food insecurity using defined vulnerability indicators. For the purpose of this study, factors influencing food insecurity and different vulnerable indicators were examined using quantitative and qualitative research methods. Observations made on the physical environment (using tools for spatial analysis) and socio-economic surveys conducted with local populations have quantified vulnerability indicators in the Niayes agricultural region. Application of the Classification and Regression Tree (CART) model has enabled us to quantify the level of vulnerability of the zone. The results show that the decrease in agricultural surface areas is the most discriminant one in this study. The speed of reduction of the agricultural areas has specially increased between 2009 and 2014, with a loss of 65% of these areas. Therefore, a decision-making system, centred on the need for reinforcing the resilience of local populations, by preserving the agricultural vocation of the Niayes region and even in the Sahelian regions requires support and extension services for the farmers in order to promote sustainable agricultural practices

    Cube Based Summaries of Large Association Rule Sets

    No full text
    International audienceA major problem when dealing with association rules post-processing is the huge amount of extracted rules. Several approaches have been implemented to summarize them. However, the obtained summaries are generally difficult to analyse because they suffer from the lack of navigational tools. In this paper, we propose a novel method for summarizing large sets of association rules. Our approach enables to obtain from a rule set, several summaries called Cube Based Summaries (CBSs). We show that the CBSs can be represented as cubes and we give an overview of OLAP navigational operations that can be used to explore them. Moreover, we define a new quality measure called homogeneity, to evaluate the interestingness of CBSs. Finally, we propose an algorithm that generates a relevant CBS w.r.t. a quality measure, to initialize the exploration. The evaluation of our algorithm on benchmarks proves the effectiveness of our approach

    Formation and Transport of a Saharan Dust Plume in Early Summer

    No full text
    This research studies the capability of the Weather Research and Forecasting model coupled with the Chemistry/Aerosol module (WRF-Chem) with and without parametrization to reproduce a dust storm, which was held on 27th June 2018 over Sahara region. The authors use satellite observations and ground-based measurements to evaluate the WRF-Chem simulations. The sensitivities of WRF-Chem Model are tested on the replication of haboob features with a tuned GOCART aerosol module. Comparisons of simulations with satellite and ground-based observations show that WRF-Chem is able to reproduce the Aerosol Optical Depth (AOD) distribution and associated changes of haboob in the meteorological fields with temperature drops of about 9 °C and wind gust 20 m·s–1. The WRF-Chem Convection-permitting model (CPM) shows strong 10-meter winds induced a large dust emission along the leading edge of a convective cold pool (LECCP). The CPM indicates heavy dust transported over the West African coast (16°W-10°W; 6°N-21°N) which has a potential for long-distance travel on 27th June between 1100 UTC and 1500 UTC. The daily precipitation is improved in the CPM with a spatial distribution similar to the GPM-IMERG precipitation and maximum rainfall located at the right place. As well as raising a large amount of dust, the haboob caused considerable damage along its route

    Mining Contextual Preference Rules for Building User Profiles

    No full text
    International audienceThe emerging of ubiquitous computing technologies in recent years has given rise to a new field of research consisting in incorporating context-aware preference querying facilities in database systems. One important step in this setting is the Preference Elicitation task which consists in providing the user ways to inform his/her choice on pairs of objects with a minimal effort. In this paper we propose an automatic preference elicitation method based on mining techniques. The method consists in extracting a user profile from a set of user preference samples. In our setting, a profile is specified by a set of contextual preference rules verifying properties of soundness and conciseness. We evaluate the efficacy of the proposed method in a series of experiments executed on a real-world database of user preferences about movies
    corecore