29 research outputs found
Functional diversity of chemokines and chemokine receptors in response to viral infection of the central nervous system.
Encounters with neurotropic viruses result in varied outcomes ranging from encephalitis, paralytic poliomyelitis or other serious consequences to relatively benign infection. One of the principal factors that control the outcome of infection is the localized tissue response and subsequent immune response directed against the invading toxic agent. It is the role of the immune system to contain and control the spread of virus infection in the central nervous system (CNS), and paradoxically, this response may also be pathologic. Chemokines are potent proinflammatory molecules whose expression within virally infected tissues is often associated with protection and/or pathology which correlates with migration and accumulation of immune cells. Indeed, studies with a neurotropic murine coronavirus, mouse hepatitis virus (MHV), have provided important insight into the functional roles of chemokines and chemokine receptors in participating in various aspects of host defense as well as disease development within the CNS. This chapter will highlight recent discoveries that have provided insight into the diverse biologic roles of chemokines and their receptors in coordinating immune responses following viral infection of the CNS
Personalized peptide-based vaccination for treatment of colorectal cancer: rational and progress
Colorectal cancer (CRC) is one of the most common cancers globally and is associated with a high rate of morbidity and mortality. A large proportion of patients with early stage CRC who undergo conventional treatments develop local recurrence or distant metastasis and in this group of advanced disease, the survival rate is low. Furthermore there is often a poor response and/or toxicity associated with chemotherapy and chemo-resistance may limit continuing conventional treatment alone. Choosing novel and targeted therapeutic approaches based on clinicopathological and molecular features of tumors in combination with conventional therapeutic approach could be used to eradicate residual micrometastasis and therefore improve patient prognosis and also be used preventively. Peptide-based vaccination therapy is one class of cancer treatment that could be used to induce tumor-specific immune responses, through the recognition of specific antigen-derived peptides in tumor cells, and this has emerged as a promising anti-cancer therapeutic strategy. The aim of this review was to summarize the main findings of recent studies in exciting field of peptide-based vaccination therapy in CRC patients as a novel therapeutic approach in treatment of CRC
Splenectomy for splenomegaly and secondary hypersplenism
Splenomegaly and secondary hypersplenism may be associated with acute and chronic infections, autoimmune states, portal hypertension or splenic vein thrombosis, and a number of infiltrative and neoplastic conditions involving the spleen. Our experience and that of others with these various conditions demonstrates that the decision to perform splenectomy should be based on well-defined and often strictly limited indications. Except for idiopathic splenomegaly, the presence and severity of secondary hypersplenism or severely symptomatic splenomegaly should be well documented. In each case, the potential for palliation and known mean duration of expected response must be weighed against the increased morbidity and mortality of splenectomy (as compared to operation for “primary” hypersplenism) . La splénomégalie avec hypersplénisme secondaire relève de multiples causes: infection aigue ou chronique, états autoimmunologiques, hypertension portale, thrombose de la veine splénique, lésions tumorales spléniques. L'expérience de l'auteur qui rejoint celle de nombreux collègues lui permet d'affirmer que les indications de la splénectomie doivent être bien définies et sont strictement limitées. A l'exception de la splénomégalie idiopathique, l'existence et l'intensité de l'hypersplénisme, l'importance des symptomes provoqués par la splénomégalie doivent être aprréciées avec précision. Dans chaque cas le potentiel de la rémission de l'affection et la durée de la rémission doivent être pris en considération en fonction de l'éventuelle morbidité et de l'éventuelle mortalité de la splénectomie (par comparaison avec la splénectomie pour hypersplénisme primaire). Eplenomegalia e hiperesplenismo secundario pueden estar asociados con infecciones agudas y crónicas, estados autoinmunes (síndrome de Felty, lupus eritematoso sistémico), “esplenomegalia congestiva” por hipertensión portal o trombosis de la vena esplénica y con una variedad de entidades de tipo infiltrativo y neoplásico que afectan al bazo (sarcoidosis, enfermedad de Gaucher, varios desórdenes mieloproliferativos y linfomas). Nuestra experiencia, y aquella de otros autores, con tales condiciones demuestra que la decisión de realizar esplenectomía debe estar fundamentada en indicaciones bien definidas y estrictamente limitadas. Excepto en casos de esplenomegalia idiopática, la presencia y severidad del hiperesplenismo secundario o de esplenomegalia severamente sintomática debe ser bien documentada. En cada caso debe determinarse el potencial de paliación y la duración de la respuesta que se espera obtener frente a la incrementada morbilidad y mortalidad de la esplenectomía (en comparación con la operación que se realiza por hiperesplenismo “primario”).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41318/1/268_2005_Article_BF01655279.pd
New interpretable machine-learning method for single-cell data reveals correlates of clinical response to cancer immunotherapy.
We introduce a new method for single-cell cytometry studies, FAUST, which performs unbiased cell population discovery and annotation. FAUST processes experimental data on a per-sample basis and returns biologically interpretable cell phenotypes, making it well suited for the analysis of complex datasets. We provide simulation studies that compare FAUST with existing methodology, exemplifying its strength. We apply FAUST to data from a Merkel cell carcinoma anti-PD-1 trial and discover pre-treatment effector memory T cell correlates of outcome co-expressing PD-1, HLA-DR, and CD28. Using FAUST, we then validate these correlates in cryopreserved peripheral blood mononuclear cell samples from the same study, as well as an independent CyTOF dataset from a published metastatic melanoma trial. Finally, we show how FAUST's phenotypes can be used to perform cross-study data integration in the presence of diverse staining panels. Together, these results establish FAUST as a powerful new approach for unbiased discovery in single-cell cytometry
Severe hepatic fibrosis in Schistosoma mansoni infection is controlled by a major locus that is closely linked to the interferon-gamma receptor gene.
Lethal disease due to hepatic periportal fibrosis occurs in 2%-10% of subjects infected by Schistosoma mansoni in endemic regions such as Sudan. It is unknown why few infected individuals present with severe disease, and inherited factors may play a role in fibrosis development. Schistosoma mansoni infection levels have been shown to be controlled by a locus that maps to chromosome 5q31-q33. To investigate the genetic control of severe hepatic fibrosis (assessed by ultrasound examination) causing portal hypertension, a segregation analysis was performed in 65 Sudanese pedigrees from the same village. Results provide evidence for a codominant major gene, with.16 as the estimated allele A frequency predisposing to advanced periportal fibrosis. For AA males, AA females, and Aa males a 50% penetrance is reached after, respectively, 9, 14, and 19 years of residency in the area, whereas for other subjects the penetrance remains <.02 after 20 years of exposure. Linkage analysis performed in four candidate regions shows that this major locus maps to chromosome 6q22-q23 and that it is closely linked (multipoint LOD score 3.12) to the IFN-gammaR1 gene encoding the receptor of the strongly antifibrogenic cytokine interferon-gamma. These results show that infection levels and advanced hepatic fibrosis in human schistosomiasis are controlled by distinct loci; they suggest that polymorphisms within the IFN-gammaR1 gene could determine severe hepatic disease due to S. mansoni infection and that the IFN-gammaR1 gene is a strong candidate for the control of abnormal fibrosis observed in other diseases