70 research outputs found

    Environmental sustainability and supply resillience of cobalt

    Get PDF
    Cobalt (Co) is an essential metal for the development of energy-transition technologies, decarbonising transportation, achieving several sustainable development goals, and facilitating a future net zero transition. However, the supply of Co is prone to severe fluctuation, disruption, and price instabilities. This review aims to identify the future evolution of Co supply through technologically resilient and environmentally sustainable pathways. The work shows that advances in both primary and secondary sources, Co mining methods and recycling systems are yet to be fully optimised. Moreover, responsible sourcing from both large mines and small artisanal mines will be necessary for a resilient Co supply. Regulatory approaches may increase transparency, support local mining communities, and improve secondary Co recovery. Novel Co supply options, such as deep-sea mining and bio-mining of tailings, are associated with major techno-economic and environmental issues. However, a circular economy, keeping Co in the economic loop for as long as possible, is yet to be optimised at both regional and global scales. To achieve environmental sustainability of Co, economic incentives, regulatory push, and improved public perception are required to drive product innovation and design for circularity. Although the complexity of Co recycling, due to lack of standardisation of design and chemistry in batteries, is an impediment, a sustainable net zero transition using Co will only be possible if a reliable primary supply and a circular secondary supply are establishe

    Genome-wide analysis of ivermectin response by Onchocerca volvulus reveals that genetic drift and soft selective sweeps contribute to loss of drug sensitivity

    Get PDF
    Treatment of onchocerciasis using mass ivermectin administration has reduced morbidity and transmission throughout Africa and Central/South America. Mass drug administration is likely to exert selection pressure on parasites, and phenotypic and genetic changes in several Onchocerca volvulus populations from Cameroon and Ghana-exposed to more than a decade of regular ivermectin treatment-have raised concern that sub-optimal responses to ivermectin's anti-fecundity effect are becoming more frequent and may spread.Pooled next generation sequencing (Pool-seq) was used to characterise genetic diversity within and between 108 adult female worms differing in ivermectin treatment history and response. Genome-wide analyses revealed genetic variation that significantly differentiated good responder (GR) and sub-optimal responder (SOR) parasites. These variants were not randomly distributed but clustered in ~31 quantitative trait loci (QTLs), with little overlap in putative QTL position and gene content between the two countries. Published candidate ivermectin SOR genes were largely absent in these regions; QTLs differentiating GR and SOR worms were enriched for genes in molecular pathways associated with neurotransmission, development, and stress responses. Finally, single worm genotyping demonstrated that geographic isolation and genetic change over time (in the presence of drug exposure) had a significantly greater role in shaping genetic diversity than the evolution of SOR.This study is one of the first genome-wide association analyses in a parasitic nematode, and provides insight into the genomics of ivermectin response and population structure of O. volvulus. We argue that ivermectin response is a polygenically-determined quantitative trait (QT) whereby identical or related molecular pathways but not necessarily individual genes are likely to determine the extent of ivermectin response in different parasite populations. Furthermore, we propose that genetic drift rather than genetic selection of SOR is the underlying driver of population differentiation, which has significant implications for the emergence and potential spread of SOR within and between these parasite populations

    In vitro anti-malarial interaction and gametocytocidal activity of cryptolepine

    Get PDF
    YesBackground: Discovery of novel gametocytocidal molecules is a major pharmacological strategy in the elimination and eradication of malaria. The high patronage of the aqueous root extract of the popular West African anti-malarial plant Cryptolepis sanguinolenta (Periplocaceae) in traditional and hospital settings in Ghana has directed this study investigating the gametocytocidal activity of the plant and its major alkaloid, cryptolepine. This study also investigates the anti-malarial interaction of cryptolepine with standard anti-malarials, as the search for new anti-malarial combinations continues. Methods: The resazurin-based assay was employed in evaluating the gametocytocidal properties of C. sanguinolenta and cryptolepine against the late stage (IV/V) gametocytes of Plasmodium falciparum (NF54). A fixed ratio method based on the SYBR Green I fluorescence-based assay was used to build isobolograms from a combination of cryptolepine with four standard anti-malarial drugs in vitro using the chloroquine sensitive strain 3D7. Results: Cryptolepis sanguinolenta ( IC50 = 49.65 nM) and its major alkaloid, cryptolepine ( IC50 = 1965 nM), showed high inhibitory activity against the late stage gametocytes of P. falciparum (NF54). In the interaction assays in asexual stage, cryptolepine showed an additive effect with both lumefantrine and chloroquine with mean ΣFIC50s of 1.017 ± 0.06 and 1.465 ± 0.17, respectively. Cryptolepine combination with amodiaquine at therapeutically relevant concentration ratios showed a synergistic effect (mean ΣFIC50 = 0.287 ± 0.10) whereas an antagonistic activity (mean ΣFIC50 = 4.182 ± 0.99) was seen with mefloquine. Conclusions: The findings of this study shed light on the high gametocytocidal properties of C. sanguinolenta and cryptolepine attributing their potent anti-malarial activity mainly to their effect on both the sexual and asexual stages of the parasite. Amodiaquine is a potential drug partner for cryptolepine in the development of novel fixed dose combinations

    The malarial exported PFA0660w is an Hsp40 co-chaperone of PfHsp70-x

    Get PDF
    Plasmodium falciparum, the human pathogen responsible for the most dangerous malaria infection, survives and develops in mature erythrocytes through the export of proteins needed for remodelling of the host cell. Molecular chaperones of the heat shock protein (Hsp) family are prominent members of the exportome, including a number of Hsp40s and a Hsp70. PFA0660w, a type II Hsp40, has been shown to be exported and possibly form a complex with PfHsp70-x in the infected erythrocyte cytosol. However, the chaperone properties of PFA0660w and its interaction with human and parasite Hsp70s are yet to be investigated. Recombinant PFA0660w was found to exist as a monomer in solution, and was able to significantly stimulate the ATPase activity of PfHsp70-x but not that of a second plasmodial Hsp70 (PfHsp70-1) or a human Hsp70 (HSPA1A), indicating a potential specific functional partnership with PfHsp70-x. Protein binding studies in the presence and absence of ATP suggested that the interaction of PFA0660w with PfHsp70-x most likely represented a co-chaperone/chaperone interaction. Also, PFA0660w alone produced a concentrationdependent suppression of rhodanese aggregation, demonstrating its chaperone properties. Overall, we have provided the first biochemical evidence for the possible role of PFA0660w as a chaperone and as co-chaperone of PfHsp70-x. We propose that these chaperones boost the chaperone power of the infected erythrocyte, enabling successful protein trafficking and folding, and thereby making a fundamental contribution to the pathology of malaria

    Molecular markers of anti-malarial drug resistance in Central, West and East African children with severe malaria.

    Get PDF
    BACKGROUND: The Plasmodium falciparum multidrug resistance 1 (PfMDR1), P. falciparum Ca(2+)-ATPase (PfATP6) and Kelch-13 propeller domain (PfK13) loci are molecular markers of parasite susceptibility to anti-malarial drugs. Their frequency distributions were determined in the isolates collected from children with severe malaria originating from three African countries. METHODS: Samples from 287 children with severe malaria [(Gabon: n = 114); (Ghana: n = 89); (Kenya: n = 84)] were genotyped for pfmdr1, pfatp6 and pfk13 loci by DNA sequencing and assessing pfmdr1 copy number variation (CNV) by real-time PCR. RESULTS: Pfmdr1-N86Y mutation was detected in 48, 10 and 10% in Lambaréné, Kumasi and Kisumu, respectively. At codon 184, the prevalence of the mutation was 73% in Lambaréné, 63% in Kumasi and 49% Kisumu. The S1034C and N1042D variants were absent at all three sites, while the frequency of the D1246Y mutation was 1, 3 and 13% in Lambaréné, Kumasi and Kisumu, respectively. Isolates with two pfmdr1 gene copy number predominantly harboured the N86Y wild-type allele and were mostly found in Kumasi (10%) (P < 0.0001). Among the main pfmdr1 haplotypes (NFD, NYD and YFD), NYD was associated with highest parasitaemia (P = 0.04). At the pfatp6 locus, H243Y and A623E mutations were observed at very low frequency at all three sites. The prevalence of the pfatp6 E431K variant was 6, 18 and 17% in Lambaréné, Kumasi and Kisumu, respectively. The L263E and S769N mutations were absent in all isolates. The pfk13 variants associated with artemisinin resistance in Southeast Asia were not observed. Eleven novel substitutions in the pfk13 locus occurring at low frequency were observed. CONCLUSIONS: Artemisinins are still highly efficacious in large malaria-endemic regions though declining efficacy has occurred in Southeast Asia. The return of chloroquine-sensitive strains following the removal of drug pressure is observed. However, selection of wild-type alleles in the multidrug-resistance gene and the increased gene copy number is associated with reduced lumefantrine sensitivity. This study indicates a need to constantly monitor drug resistance to artemisinin in field isolates from malaria-endemic countries

    The landscape of inherited and de novo copy number variants in a plasmodium falciparum genetic cross

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Copy number is a major source of genome variation with important evolutionary implications. Consequently, it is essential to determine copy number variant (CNV) behavior, distributions and frequencies across genomes to understand their origins in both evolutionary and generational time frames. We use comparative genomic hybridization (CGH) microarray and the resolution provided by a segregating population of cloned progeny lines of the malaria parasite, <it>Plasmodium falciparum</it>, to identify and analyze the inheritance of 170 genome-wide CNVs.</p> <p>Results</p> <p>We describe CNVs in progeny clones derived from both Mendelian (i.e. inherited) and non-Mendelian mechanisms. Forty-five CNVs were present in the parent lines and segregated in the progeny population. Furthermore, extensive variation that did not conform to strict Mendelian inheritance patterns was observed. 124 CNVs were called in one or more progeny but in neither parent: we observed CNVs in more than one progeny clone that were not identified in either parent, located more frequently in the telomeric-subtelomeric regions of chromosomes and singleton <it>de novo </it>CNVs distributed evenly throughout the genome. Linkage analysis of CNVs revealed dynamic copy number fluctuations and suggested mechanisms that could have generated them. Five of 12 previously identified expression quantitative trait loci (eQTL) hotspots coincide with CNVs, demonstrating the potential for broad influence of CNV on the transcriptional program and phenotypic variation.</p> <p>Conclusions</p> <p>CNVs are a significant source of segregating and <it>de novo </it>genome variation involving hundreds of genes. Examination of progeny genome segments provides a framework to assess the extent and possible origins of CNVs. This segregating genetic system reveals the breadth, distribution and dynamics of CNVs in a surprisingly plastic parasite genome, providing a new perspective on the sources of diversity in parasite populations.</p

    Analyses of genome architecture and gene expression reveal novel candidate virulence factors in the secretome of Phytophthora infestans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Phytophthora infestans </it>is the most devastating pathogen of potato and a model organism for the oomycetes. It exhibits high evolutionary potential and rapidly adapts to host plants. The <it>P. infestans </it>genome experienced a repeat-driven expansion relative to the genomes of <it>Phytophthora sojae </it>and <it>Phytophthora ramorum </it>and shows a discontinuous distribution of gene density. Effector genes, such as members of the RXLR and Crinkler (CRN) families, localize to expanded, repeat-rich and gene-sparse regions of the genome. This distinct genomic environment is thought to contribute to genome plasticity and host adaptation.</p> <p>Results</p> <p>We used <it>in silico </it>approaches to predict and describe the repertoire of <it>P. infestans </it>secreted proteins (the secretome). We defined the "plastic secretome" as a subset of the genome that (i) encodes predicted secreted proteins, (ii) is excluded from genome segments orthologous to the <it>P. sojae </it>and <it>P. ramorum </it>genomes and (iii) is encoded by genes residing in gene sparse regions of <it>P. infestans </it>genome. Although including only ~3% <it>of P. infestans </it>genes, the plastic secretome contains ~62% of known effector genes and shows >2 fold enrichment in genes induced <it>in planta</it>. We highlight 19 plastic secretome genes induced <it>in planta </it>but distinct from previously described effectors. This list includes a trypsin-like serine protease, secreted oxidoreductases, small cysteine-rich proteins and repeat containing proteins that we propose to be novel candidate virulence factors.</p> <p>Conclusions</p> <p>This work revealed a remarkably diverse plastic secretome. It illustrates the value of combining genome architecture with comparative genomics to identify novel candidate virulence factors from pathogen genomes.</p

    Drug Resistance in Eukaryotic Microorganisms

    Get PDF
    Eukaryotic microbial pathogens are major contributors to illness and death globally. Although much of their impact can be controlled by drug therapy as with prokaryotic microorganisms, the emergence of drug resistance has threatened these treatment efforts. Here, we discuss the challenges posed by eukaryotic microbial pathogens and how these are similar to, or differ from, the challenges of prokaryotic antibiotic resistance. The therapies used for several major eukaryotic microorganisms are then detailed, and the mechanisms that they have evolved to overcome these therapies are described. The rapid emergence of resistance and the restricted pipeline of new drug therapies pose considerable risks to global health and are particularly acute in the developing world. Nonetheless, we detail how the integration of new technology, biological understanding, epidemiology and evolutionary analysis can help sustain existing therapies, anticipate the emergence of resistance or optimize the deployment of new therapies
    corecore