43 research outputs found

    Fructose transport-deficient Staphylococcus aureus reveals important role of epithelial glucose transporters in limiting sugar-driven bacterial growth in airway surface liquid.

    Get PDF
    Hyperglycaemia as a result of diabetes mellitus or acute illness is associated with increased susceptibility to respiratory infection with Staphylococcus aureus. Hyperglycaemia increases the concentration of glucose in airway surface liquid (ASL) and promotes the growth of S. aureus in vitro and in vivo. Whether elevation of other sugars in the blood, such as fructose, also results in increased concentrations in ASL is unknown and whether sugars in ASL are directly utilised by S. aureus for growth has not been investigated. We obtained mutant S. aureus JE2 strains with transposon disrupted sugar transport genes. NE768(fruA) exhibited restricted growth in 10 mM fructose. In H441 airway epithelial-bacterial co-culture, elevation of basolateral sugar concentration (5-20 mM) increased the apical growth of JE2. However, sugar-induced growth of NE768(fruA) was significantly less when basolateral fructose rather than glucose was elevated. This is the first experimental evidence to show that S. aureus directly utilises sugars present in the ASL for growth. Interestingly, JE2 growth was promoted less by glucose than fructose. Net transepithelial flux of D-glucose was lower than D-fructose. However, uptake of D-glucose was higher than D-fructose across both apical and basolateral membranes consistent with the presence of GLUT1/10 in the airway epithelium. Therefore, we propose that the preferential uptake of glucose (compared to fructose) limits its accumulation in ASL. Pre-treatment with metformin increased transepithelial resistance and reduced the sugar-dependent growth of S. aureus. Thus, epithelial paracellular permeability and glucose transport mechanisms are vital to maintain low glucose concentration in ASL and limit bacterial nutrient sources as a defence against infection

    The dipolar endofullerene HF@C60

    Get PDF
    The cavity inside fullerenes provides a unique environment for the study of isolated atoms and molecules. We report encapsulation of hydrogen fluoride inside C60 using molecular surgery to give the endohedral fullerene HF@C60. The key synthetic step is the closure of the open fullerene cage while minimizing escape of HF. The encapsulated HF molecule moves freely inside the cage and exhibits quantization of its translational and rotational degrees of freedom, as revealed by inelastic neutron scattering and infrared spectroscopy. The rotational and vibrational constants of the encapsulated HF molecules were found to be redshifted relative to free HF. The NMR spectra display a large 1H-19F J coupling typical of an isolated species. The dipole moment of HF@C60 was estimated from the temperature-dependence of the dielectric constant at cryogenic temperatures and showed that the cage shields around 75% of the HF dipole

    Continual conscious bioluminescent imaging in freely moving somatotransgenic mice

    Get PDF
    © 2017 The Author(s). Luciferase bioimaging in living animals is increasingly being applied in many fields of biomedical research. Rodent imaging usually involves anaesthetising the animal during data capture, however, the biological consequences of anaesthesia have been largely overlooked. We have evaluated luciferase bioimaging in conscious, unrestrained mice after neonatal intracranial or intravascular administration of lentiviral, luciferase reporter cassettes (biosensors); we present real-time analyses from the first day of life to adulthood. Anaesthetics have been shown to exert both neurotoxic and neuroprotective effects during development and in models of brain injury. Mice subjected to bioimaging after neonatal intracranial or intravascular administration of biosensors, targeting the brain and liver retrospectively showed no significant difference in luciferase expression when conscious or unconscious throughout development. We applied conscious bioimaging to the assessment of NFκB and STAT3 transcription factor activated reporters during the earliest stages of development in living, unrestrained pups. Our data showed unique longitudinal activities for NFκB and STAT3 in the brain of conscious mice. Conscious bioimaging was applied to a neonatal mouse model of cerebral palsy (Hypoxic-Ischaemic Encephalopathy). Imaging of NFκB reporter before and after surgery showed a significant increase in luciferase expression, coinciding with secondary energy failure, in lesioned mice compared to controls

    Macrophage signaling in HIV-1 infection

    Get PDF
    The human immunodeficiency virus-1 (HIV-1) is a member of the lentivirus genus. The virus does not rely exclusively on the host cell machinery, but also on viral proteins that act as molecular switches during the viral life cycle which play significant functions in viral pathogenesis, notably by modulating cell signaling. The role of HIV-1 proteins (Nef, Tat, Vpr, and gp120) in modulating macrophage signaling has been recently unveiled. Accessory, regulatory, and structural HIV-1 proteins interact with signaling pathways in infected macrophages. In addition, exogenous Nef, Tat, Vpr, and gp120 proteins have been detected in the serum of HIV-1 infected patients. Possibly, these proteins are released by infected/apoptotic cells. Exogenous accessory regulatory HIV-1 proteins are able to enter macrophages and modulate cellular machineries including those that affect viral transcription. Furthermore HIV-1 proteins, e.g., gp120, may exert their effects by interacting with cell surface membrane receptors, especially chemokine co-receptors. By activating the signaling pathways such as NF-kappaB, MAP kinase (MAPK) and JAK/STAT, HIV-1 proteins promote viral replication by stimulating transcription from the long terminal repeat (LTR) in infected macrophages; they are also involved in macrophage-mediated bystander T cell apoptosis. The role of HIV-1 proteins in the modulation of macrophage signaling will be discussed in regard to the formation of viral reservoirs and macrophage-mediated T cell apoptosis during HIV-1 infection
    corecore