7 research outputs found

    Early ultrasound surveillance of newly-created haemodialysis arteriovenous fistula

    Get PDF
    IntroductionWe assess if ultrasound surveillance of newly-created arteriovenous fistulas (AVFs) can predict nonmaturation sufficiently reliably to justify randomized controlled trial (RCT) evaluation of ultrasound-directed salvage intervention.MethodsConsenting adults underwent blinded fortnightly ultrasound scanning of their AVF after creation, with scan characteristics that predicted AVF nonmaturation identified by logistic regression modeling.ResultsOf 333 AVFs created, 65.8% matured by 10 weeks. Serial scanning revealed that maturation occurred rapidly, whereas consistently lower fistula flow rates and venous diameters were observed in those that did not mature. Wrist and elbow AVF nonmaturation could be optimally modeled from week 4 ultrasound parameters alone, but with only moderate positive predictive values (PPVs) (wrist, 60.6% [95% confidence interval, CI: 43.9–77.3]; elbow, 66.7% [48.9–84.4]). Moreover, 40 (70.2%) of the 57 AVFs that thrombosed by week 10 had already failed by the week 4 scan, thus limiting the potential of salvage procedures initiated by that scan’s findings to alter overall maturation rates. Modeling of the early ultrasound characteristics could also predict primary patency failure at 6 months; however, that model performed poorly at predicting assisted primary failure (those AVFs that failed despite a salvage attempt), partly because patency of at-risk AVFs was maintained by successful salvage performed without recourse to the early scan data.ConclusionEarly ultrasound surveillance may predict fistula maturation, but is likely, at best, to result in only very modest improvements in fistula patency. Power calculations suggest that an impractically large number of participants (>1700) would be required for formal RCT evaluation

    Ankle Doppler for Cuffless Ankle Brachial Index Estimation and Peripheral Artery Disease Diagnosis Independent of Diabetes

    No full text
    Ankle brachial pressure index (ABPI) is the first-line test to diagnose peripheral artery disease (PAD). Its adoption in clinical practice is poor and its validity, particularly in diabetes, is limited. We hypothesised that ABPI can be accurately and precisely estimated based on cuffless Doppler waveforms. Retrospective analysis of standard ABPI and handheld Doppler waveform characteristics (n = 200). Prospective analysis of angle-corrected Doppler acceleration index (AccI, n = 148) and standard ABPI with testing of performance to diagnose PAD as assessed with imaging reference standards in consecutive patients. The highest AccI from handheld Doppler at ankle arteries was significantly logarithmically associated with the highest standard ABPI (E[y] = 0.32 ln [1.71 ∗ x + 1], p R2 = 0.68, n = 100 limbs). Estimated ABPI (eABPI) based on AccI closely resembled ABPI (r = 0.81, p n = 100 limbs). AccI from angle-corrected Doppler in patients without overt media sclerosis (ABPI ≤ 1.1) improved ABPI prediction (E[y] = 0.297 ∗ ln[0.039 ∗ x + 1], R2 = 0.92, p = 0.006, average deviation 0.00 ± 0.08, n = 100). In a population (n = 148 limbs) including diabetes (56%), chronic limb-threatening ischaemia (51%) and media sclerosis (32%), receiver operating characteristics analysis of (angle-corrected) eABPI performed significantly better than standard ABPI to diagnose PAD defined by ultrasound (ROC AUC = 0.99 ± 0.01, p p p = 0.608). ABPI can be estimated based on ankle Doppler AccI without compression, and eABPI performs better than standard ABPI to diagnose PAD independent of diabetes. eABPI has the potential to be included as a standard component of lower extremity ultrasound

    ImmunoPET Imaging of Endogenous and Transfected Prolactin Receptor Tumor Xenografts

    No full text
    Antibodies labeled with positron-emitting isotopes have been used for tumor detection, predicting which patients may respond to tumor antigen-directed therapy, and assessing pharmacodynamic effects of drug interventions. Prolactin receptor (PRLR) is overexpressed in breast and prostate cancers and is a new target for cancer therapy. We evaluated REGN2878, an anti-PRLR monoclonal antibody, as an immunoPET reagent. REGN2878 was labeled with Zr-89 after conjugation with desferrioxamine B or labeled with I-131/I-124. In vitro determination of the half-maximal inhibitory concentration (IC50) of parental REGN2878, DFO-REGN2878, and iodinated REGN2878 was performed by examining the effect of the increasing amounts of these on uptake of trace-labeled I-131 REGN2878. REGN1932, a non-PRLR binding antibody, was used as a control. Imaging and biodistribution studies were performed in mice bearing tumor xenografts with various expression levels of PRLR, including MCF-7, transfected MCF-7/PRLR, PC3, and transfected PC3/PRLR and T4D7v11 cell lines. The specificity of uptake in tumors was evaluated by comparing Zr-89 REGN2878 and REGN1932, and in vivo competition compared Zr-89 REGN2878 uptake in tumor xenografts with and without prior injection of 2 mg of nonradioactive REGN2878. The competition binding assay of DFO-REGN2878 at ratios of 3.53–5.77 DFO per antibody showed IC50 values of 0.4917 and 0.7136 nM, respectively, compared to 0.3455 nM for parental REGN2878 and 0.3343 nM for I-124 REGN2878. Imaging and biodistribution studies showed excellent targeting of Zr-89 REGN2878 in PRLR-positive xenografts at delayed times of 189 h (presented as mean ± 1 SD, percent injected activity per mL (%IA/mL) 74.6 ± 33.8%IA/mL). In contrast, MCF-7/PRLR tumor xenografts showed a low uptake (7.0 ± 2.3%IA/mL) of control Zr-89 REGN1932 and a very low uptake and rapid clearance of I-124 REGN2878 (1.4 ± 0.6%IA/mL). Zr-89 REGN2878 has excellent antigen-specific targeting in various PRLR tumor xenograft models. We estimated, using image-based kinetic modeling, that PRLR antigen has a very rapid in vivo turnover half-life of ∼14 min from the cell membrane. Despite relatively modest estimated tumor PRLR expression numbers, PRLR-expressing cells have shown final retention of the Zr-89 REGN2878 antibody, with an uptake that appeared to be related to PRLR expression. This reagent has the potential to be used in clinical trials targeting PRLR
    corecore