387 research outputs found

    Systems level roadmap for solvent recovery and reuse in industries

    Get PDF
    Recovering waste solvent for reuse presents an excellent alternative to improving the greenness of industrial processes. Implementing solvent recovery practices in the chemical industry is necessary, given the increasing focus on sustainability to promote a circular economy. However, the systematic design of recovery processes is a daunting task due to the complexities associated with waste stream composition, techno-economic analysis, and environmental assessment. Furthermore, the challenges to satisfy the desired product specifications, particularly in pharmaceuticals and specialty chemical industries, may also deter solvent recovery and reuse practices. To this end, this review presents a systems-level approach including various methodologies that can be implemented to design and evaluate efficient solvent recovery pathways

    The WISH pond: potential for development of aquaculture in northeast Cambodia

    Get PDF
    In Cambodia, fish provide a major source of animal protein for rural households. Capture fisheries have declined and aquaculture has been identified as playing an important role in food and nutritional security and rural income generation. In 2011, WorldFish, in partnership with the Stung Treng Fishery Administration Cantonment and the Culture and Environment Preservation Association, aimed at improving the uptake of small-scale aquaculture by communities with limited experience in fish culture in Stung Treng Province in northeast Cambodia. The system was given the name “WISH ponds,” derived from the combination of the words "water" and "fish" to reflect the integration of fish cultivation with water for storage and vegetable growing. It was targeted towards households with limited space to construct large aquaculture ponds, such as peri-urban households. The study indicated that WISH ponds can create an important learning platform for communities to address challenges associated with small-scale aquaculture development by using scientific data generated and owned by the participants. Results from this 2011 study provided important insights into the challenges and constraints for introducing small-scale aquaculture into rural households in Cambodia. In mid-2013, WorldFish won a Feed the Future Partnering for Innovation grant, funded by the United States Agency for International Development, to build upon its successful engagement with communities in northeast Cambodia where WISH ponds had already been introduced and investigate scaling this technology to establish more WISH ponds in these communities

    Changes in Management Can Improve Returns from Cambodian Upland Crops

    Get PDF
    Farming systems research for wet-season non-rice upland crops in Cambodia is being conducted with the overall aim of poverty reduction and food security for farmers in the Provinces of Battambang and Kampong Cham. Some of these cash crops exhibit low and variable incomes, especially when grown in the early wet season. Cambodian farmers may borrow money to buy crop inputs and often sell their produce to companies and traders from neighbouring countries, hence they are price takers. Some new crop technologies are evaluated which relate to soil and crop fertility management interacting with climatic factors. The DSSAT crop simulation model is used to predict outcomes from alternative management strategies. Bio-economic analyses are conducted to assess the likely appeal of these technologies to Cambodian farmers in a return-on-investment context. The results show that management to adjust the nitrogen fertility available to corn, the use of rhizobium in soybean, and a delay in planting early-wet-season corn may all show substantial financial benefits. Further research and an associated farmer demonstration program involving local extension officers are recommended.Upland crops, Cambodia, technology, economics, simulation, risk, Crop Production/Industries,

    A Genome-Wide Association Study for Susceptibility to Visual Experience-Induced Myopia

    Get PDF
    PURPOSE. The rapid rise in prevalence over recent decades and high heritability of myopia suggest a role for gene-environment (G X E) interactions in myopia susceptibility. Few such G X E interactions have been discovered to date. We aimed to test the hypothesis that genetic analysis of susceptibility to visual experience-induced myopia in an animal model would identify novel G X E interaction loci. METHODS. Chicks aged 7 days (n = 987) were monocularly deprived of form vision for 4 days. A genome-wide association study (GWAS) was carried out in the 20% of chicks most susceptible and least susceptible to form deprivation (n = 380). There were 304,963 genetic markers tested for association with the degree of induced axial elongation in treated versus control eyes (A-scan ultrasonography). A GWAS candidate region was examined in the following three human cohorts: CREAM consortium (n = 44,192), UK Biobank (n = 95,505), and Avon Longitudinal Study of Parents and Children (ALSPAC; n = 4989). RESULTS. A locus encompassing the genes PIK3CG and PRKAR2B was genome-wide significantly associated with myopia susceptibility in chicks (lead variant rs317386235, P = 9.54e-08). In CREAM and UK Biobank GWAS datasets, PIK3CG and PRKAR2B were enriched for strongly-associated markers (meta-analysis lead variant rs117909394, P = 1.7e-07). In ALSPAC participants, rs117909394 had an age-dependent association with refractive error (-0.22 diopters [D] change over 8 years, P = 5.2e-04) and nearby variant rs17153745 showed evidence of a G X E interaction with time spent reading (effect size -0.23 D, P = 0.022). CONCLUSIONS. This work identified the PIK3CG-PRKAR2B locus as a mediator of susceptibility to visually induced myopia in chicks and suggests a role for this locus in conferring susceptibility to myopia in human cohorts.</p

    Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease

    Get PDF
    The events that convert adherent epithelial cells into individual migratory cells that can invade the extracellular matrix are known collectively as epithelial-mesenchymal transition (EMT). Throughout evolution, the capacity of cells to switch between these two cellular states has been fundamental in the generation of complex body patterns. Here, we review the EMT events that build the embryo and further discuss two prototypical processes governed by EMT in amniotes: gastrulation and neural crest formation. Cells undergo EMT to migrate and colonize distant territories. Not surprisingly, this is also the mechanism used by cancer cells to disperse throughout the body

    Quality of antimalarials at the epicenter of antimalarial drug resistance: results from an overt and mystery client survey in Cambodia.

    Get PDF
    Widespread availability of monotherapies and falsified antimalarials is thought to have contributed to the historical development of multidrug-resistant malaria in Cambodia. This study aimed to document the quality of artemisinin-containing antimalarials (ACAs) and to compare two methods of collecting antimalarials from drug outlets: through open surveyors and mystery clients (MCs). Few oral artemisinin-based monotherapies and no suspected falsified medicines were found. All 291 samples contained the stated active pharmaceutical ingredient (API) of which 69% were considered good quality by chemical analysis. Overall, medicine quality did not differ by collection method, although open surveyors were less likely to obtain oral artemisinin-based monotherapies than MCs. The results are an encouraging indication of the positive impact of the country's efforts to tackle falsified antimalarials and artemisinin-based monotherapies. However, poor-quality medicines remain an ongoing challenge that demands sustained political will and investment of human and financial resources
    corecore