443 research outputs found

    Correlation-induced symmetry-broken states in large-angle twisted bilayer graphene on MoS2

    Full text link
    Strongly correlated states are commonly emerged in twisted bilayer graphene (TBG) with magic-angle, where the electron-electron (e-e) interaction U becomes prominent relative to the small bandwidth W of the nearly flat band. However, the stringent requirement of this magic angle makes the sample preparation and the further application facing great challenges. Here, using scanning tunneling microscopy (STM) and spectroscopy (STS), we demonstrate that the correlation-induced symmetry-broken states can also be achieved in a 3.45{\deg} TBG, via engineering this non-magic-angle TBG into regimes of U/W > 1. We enhance the e-e interaction through controlling the microscopic dielectric environment by using a MoS2 substrate. Simultaneously, the bandwidth of the low-energy van Hove singularity (VHS) peak is reduced by enhancing the interlayer coupling via STM tip modulation. When partially filled, the VHS peak exhibits a giant splitting into two states flanked the Fermi level and shows a symmetry-broken LDOS distribution with a stripy charge order, which confirms the existence of strong correlation effect in our 3.45{\deg} TBG. Our result paves the way for the study and application of the correlation physics in TBGs with a wider range of twist angle

    Evaluation of human enterovirus 71 and coxsackievirus A16 specific immunoglobulin M antibodies for diagnosis of hand-foot-and-mouth disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hand-foot-and-mouth disease (HFMD) is caused mainly by the human enterovirus type 71 (HEV71) and the Coxsackievirus A group type 16 (CVA16). Large outbreaks of disease have occurred frequently in the Asia-Pacific region. Reliable methods are needed for diagnosis of HFMD in childen. IgM-capture ELISA, with its notable advantages of convenience and low cost, provides a potentially frontline assay. We aimed to evaluate the newly developed IgM-capture ELISAs for HEV71 and CVA16 in the diagnosis of HFMD, and to measure the kinetics of IgM over the course of HEV71 or CVA16 infections.</p> <p>Results</p> <p>We mapped, for the first time, the kinetics of IgM in HEV71 and CVA16 infection. HEV71- and CVA16-IgM were both detectable in some patients on day 1 of illness, and in 100% of patients by day 5 (HEV71) and day 8 (CVA16) respectively; both IgMs persisted for several weeks. The IgM detection rates were 90.2% (138 of 153 sera) and 68.0% (66 of 97 sera) for HEV71 and CVA16 infections, respectively, during the first 7 days of diseases. During the first 90 days after onset these values were 93.6% (233 of 249 sera) and 72.8% (91 of 125 sera) for HEV71 and CVA16 infections, respectively. Some cross-reactivity was observed between HEV71- and CVA16-IgM ELISAs. HEV71-IgM was positive in 38 of 122 (31.1%) CVA16 infections, 14 of 49 (28.6%) other enteroviral infections and 2 of 105 (1.9%) for other respiratory virus infected sera. Similarly, CVA16-IgM was apparently positive in 58 of 211 (27.5%) HEV71 infections, 16 of 48 (33.3%) other enterovirus infections and 3 of 105 (2.9%) other respiratory virus infected sera. Nevertheless, the ELISA yielded the higher OD<sub>450 </sub>value of main antibody than that of cross-reaction antibody, successfully identifying the enteroviral infection in 96.6% (HEV71) and 91.7% (CVA16) cases. When blood and rectal swabs were collected on the same day, the data showed that the agreement between IgM-capture ELISA and real-time RT-PCR in HEV71 was high (Kappa value = 0.729) while CVA16 somewhat lower (Kappa value = 0.300).</p> <p>Conclusions</p> <p>HEV71- and CVA16-IgM ELISAs can be deployed successfully as a convenient and cost-effective diagnostic tool for HFMD in clinical laboratories.</p

    The Role of Gaseous Molecules in Traumatic Brain Injury: An Updated Review

    Get PDF
    Traumatic brain injury (TBI) affects millions of people in China each year. TBI has a high mortality and often times a serious prognosis. The causative mechanisms of TBI during development and recovery from an injury remain vague, leaving challenges for the medical community to provide treatment options that improve prognosis and provide an optimal recovery. Biological gaseous molecules including nitric oxide (NO), carbon monoxide (CO), hydrogen sulfide (H2S), and molecular hydrogen (H2) have been found to play critical roles in physiological and pathological conditions in mammals. Accumulating evidence has found that these gaseous molecules can execute neuroprotection in many central nervous system (CNS) conditions due to their highly permeable properties allowing them to enter the brain. Considering the complicated mechanisms and the serious prognosis of TBI, effective and adequate therapeutic approaches are urgently needed. These four gaseous molecules can be potential attractive therapeutic intervention on TBI. In this review, we will present a comprehensive overview on the role of these four biological gasses in the development of TBI and their potential therapeutic applications

    Periodic Mesoporous Organosilica Nanorice

    Get PDF
    A periodic mesoporous organosilica (PMO) with nanorice morphology was successfully synthesized by a template assisted sol–gel method using a chain-type precursor. The PMO is composed of D and T sites in the ratio 1:2. The obtained mesoporous nanorice has a surface area of 753 m2 g−1, one-dimensional channels, and a narrow pore size distribution centered at 4.3 nm. The nanorice particles have a length of ca. 600 nm and width of ca. 200 nm

    No genetic causal association between iron status and osteoporosis: A two-sample Mendelian randomization

    Get PDF
    ObjectiveTo explore the genetic causal association between osteoporosis (OP) and iron status through Mendelian randomization (MR).MethodsPublicly available genome-wide association study (GWAS) summary data were used for MR analysis with four iron status-related indicators (ferritin, iron, total iron binding capacity, and transferrin saturation) as exposures and three different types of OP (OP, OP with pathological fracture, and postmenopausal OP with pathological fracture) as outcomes. The inverse-variance weighted (IVW) method was used to analyze the genetic causal association between the four indicators of iron status and OP. The heterogeneity of MR results was determined using IVW and MR–Egger methods. The pleiotropy of MR results was determined using MR–Egger regression. A leave-one-SNP-out test was performed to determine whether the MR results were affected by a single nucleotide polymorphism (SNP). The weighted median method was conducted to further validate our results.ResultsBased on IVW, MR–Egger and weighted median models, we found no causal association between iron status (ferritin, iron, total iron binding capacity, or transferrin saturation) and OP (Pbeta &gt; 0.05 in all models). IVW and MR–Egger analysis of OP with pathological fracture and iron status indicators showed no potential genetic causal association (Pbeta&gt; 0.05 in the two analyses). The results of the weighted median were consistent with those of IVW (Pbeta&gt; 0.05 in all analyses). There was no potential genetic causal association between iron status and postmenopausal OP with pathological fracture based on serum iron (Pbeta&gt;0.05 in all models). No heterogeneity or horizontal pleiotropy was found in any of the analyses. None of the leave-one-out tests in the analyses found any SNP that could affect the results of MR.ConclusionOur results demonstrate that there is no genetic causal association between OP and iron status, but the effects of other factors were not excluded

    Proteomic Analysis of Fractionated Toxoplasma Oocysts Reveals Clues to Their Environmental Resistance

    Get PDF
    Toxoplasma gondii is an obligate intracellular parasite that is unique in its ability to infect a broad range of birds and mammals, including humans, leading to an extremely high worldwide prevalence and distribution. This work focuses on the environmentally resistant oocyst, which is the product of sexual replication in felids and an important source of human infection. Due to the difficulty in producing and working with oocysts, relatively little is known about how this stage is able to resist extreme environmental stresses and how they initiate a new infection, once ingested. To fill this gap, the proteome of the wall and sporocyst/sporozoite fractions of mature, sporulated oocysts were characterized using one-dimensional gel electrophoresis followed by LC-MS/MS on trypsin-digested peptides. A combined total of 1021 non-redundant T. gondii proteins were identified in the sporocyst/sporozoite fraction and 226 were identified in the oocyst wall fraction. Significantly, 172 of the identified proteins have not previously been identified in Toxoplasma proteomic studies. Among these are several of interest for their likely role in conferring environmental resistance including a family of small, tyrosine-rich proteins present in the oocyst wall fractions and late embryogenesis abundant domain-containing (LEA) proteins in the cytosolic fractions. The latter are known from other systems to be key to enabling survival against desiccation

    High-Resolution Electron Microscopy of Semiconductor Heterostructures and Nanostructures

    Get PDF
    This chapter briefly describes the fundamentals of high-resolution electron microscopy techniques. In particular, the Peak Pairs approach for strain mapping with atomic column resolution, and a quantitative procedure to extract atomic column compositional information from Z-contrast high-resolution images are presented. It also reviews the structural, compositional, and strain results obtained by conventional and advanced transmission electron microscopy methods on a number of III–V semiconductor nanostructures and heterostructures

    Enhanced Microwave Absorption Properties of Intrinsically Core/shell Structured La0.6Sr0.4MnO3Nanoparticles

    Get PDF
    The intrinsically core/shell structured La0.6Sr0.4MnO3nanoparticles with amorphous shells and ferromagnetic cores have been prepared. The magnetic, dielectric and microwave absorption properties are investigated in the frequency range from 1 to 12 GHz. An optimal reflection loss of −41.1 dB is reached at 8.2 GHz with a matching thickness of 2.2 mm, the bandwidth with a reflection loss less than −10 dB is obtained in the 5.5–11.3 GHz range for absorber thicknesses of 1.5–2.5 mm. The excellent microwave absorption properties are a consequence of the better electromagnetic matching due to the existence of the protective amorphous shells, the ferromagnetic cores, as well as the particular core/shell microstructure. As a result, the La0.6Sr0.4MnO3nanoparticles with amorphous shells and ferromagnetic cores may become attractive candidates for the new types of electromagnetic wave absorption materials

    Spin-singlet superconductivity with multiple gaps in PrO0.89F0.11FeAs

    Full text link
    Since the discovery of high transition-temperature (Tc) superconductivity in copper oxides two decades ago, continuous efforts have been devoted to searching for similar phenomenon in other compounds. With the exception of MgB2 (Tc =39 K), however, Tc is generally far lower than desired. Recently, breakthrough has been made in a new class of oxypnictide compounds. Following the initial discovery of superconductivity in LaO1-x FxFeAs (Tc =26 K), Tc onset has been raised to 55 K in ReO1-xFxFeAs (Re: Ce, Pr, Nd, Sm). Meanwhile, unravelling the nature of the energy associated with the formation of current-carrying pairs (Cooper pairs), referred to as the superconducting energy gap, is the first and vital step towards understanding why the superconductivity occurs at such high temperature and is also important for finding superconductors with still higher Tc. Here we show that, on the basis of the nuclear magnetic resonance (NMR) measurements in PrO0.89F0.11FeAs (Tc =45 K), the Cooper pair is in the spin-singlet state (two spins are anti-paralleled), with two energy gaps opening below Tc. The results strongly suggest the existence of nodes (zeros) in the gap. None of superconductors known to date has such unique gap features, although copper-oxides and MgB2 share part of them.Comment: submitted on May 1
    corecore