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No genetic causal association
between iron status and
osteoporosis: A two-sample
Mendelian randomization
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Che Zheng1, Haibo Si1, Yuangang Wu1, Yuan Liu1,
Mingyang Li1, Limin Wu1 and Bin Shen1*

1Orthopedic Research Institute, Department of Orthopedics, Sichuan University West China
Hospital, Chengdu, Sichuan, China, 2Department of Orthopedics, The Third Hospital of Mianyang,
Sichuan Mental Health Center, Mianyang, Sichuan, China
Objective: To explore the genetic causal association between osteoporosis

(OP) and iron status through Mendelian randomization (MR).

Methods: Publicly available genome-wide association study (GWAS) summary

data were used for MR analysis with four iron status-related indicators (ferritin,

iron, total iron binding capacity, and transferrin saturation) as exposures and

three different types of OP (OP, OP with pathological fracture, and

postmenopausal OP with pathological fracture) as outcomes. The inverse-

variance weighted (IVW) method was used to analyze the genetic causal

association between the four indicators of iron status and OP. The

heterogeneity of MR results was determined using IVW and MR–Egger

methods. The pleiotropy of MR results was determined using MR–Egger

regression. A leave-one-SNP-out test was performed to determine whether

the MR results were affected by a single nucleotide polymorphism (SNP). The

weighted median method was conducted to further validate our results.

Results: Based on IVW, MR–Egger and weighted median models, we found no

causal association between iron status (ferritin, iron, total iron binding capacity,

or transferrin saturation) and OP (Pbeta > 0.05 in all models). IVW and MR–Egger

analysis of OP with pathological fracture and iron status indicators showed no

potential genetic causal association (Pbeta> 0.05 in the two analyses). The

results of the weighted median were consistent with those of IVW (Pbeta> 0.05

in all analyses). There was no potential genetic causal association between iron

status and postmenopausal OP with pathological fracture based on serum iron

(Pbeta>0.05 in all models). No heterogeneity or horizontal pleiotropy was found
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in any of the analyses. None of the leave-one-out tests in the analyses found

any SNP that could affect the results of MR.

Conclusion: Our results demonstrate that there is no genetic causal

association between OP and iron status, but the effects of other factors were

not excluded.
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Introduction

Osteoporosis (OP) is a systemic bone disease characterized

by a reduction in bone mass and a deterioration of trabecular

structure, resulting in decreased bone strength and an increased

risk of fragility fractures (1). It is a chronic disease that exerts

significant negative impacts on the health of elderly individuals,

with a prevalence of 30-40% in women and a prevalence of 10-

20% in men over 50 in mainland China (2). Established risk

factors for OP include advanced age, endocrine disorders,

malnutrition, obesity, and the use of drugs affecting bone

metabolism (3). Moreover, some genetic mutations (three

single nucleotide polymorphisms [SNPs] near the TNFRSF11B

gene) contribute to the increased risk of OP (4). OP is occult and

tends not to be diagnosed until the occurrence of fractures

(commonly in the hip, caudal vertebrae, or forearm), which

seriously compromise the life of patients. In Europe, the harm

caused by OP complicated with fracture is second only to lung

cancer (5). However, the current treatments of OP largely rely on

medications such as bisphosphonates, calcitonin, oestrogen, and

oestrogen receptor agonists, which have limited therapeutic

effect and considerable adverse reactions (6). Therefore,

further exploration of other risk factors for OP is imperative

for the treatment and prevention of OP.

As an essential element for the human body, iron is

indispensable for mitochondrial function, DNA synthesis and

repair, and cell survival (7). These physiological activities acquire

iron mainly through three pathways: the decomposition and

destruction of ageing red blood cells by macrophages, absorption

of iron in food to compensate for iron loss or increased demand,

and the buffering effect of the iron reserve in the liver (8). Iron

metabolism in the human body is mainly realized by regulating a

series of iron metabolism-related proteins such as hepcidin,

ferritin, transferrin, transferrin receptor, ferroportin 1 (FPN1),

and divalent metal transporter 1 (DMT1). Problems in any one

of these links lead to an imbalanced iron status in the body,

resulting in a series of adverse effects (8). For example, iron

deficiency can result in cognitive developmental defects in

children and adverse pregnancy in women (9), whereas iron
02
overload can damage multiple organs, including the liver, heart,

and pancreas (10).

At present, the impact of iron status on OP remains unclear.

Accumulating studies have revealed a certain correlation between

iron status and OP at the biochemical level; i.e., an imbalance in

iron status may increase the risk of OP (11–13). In contrast, some

animal experiments have indicated that there is no correlation

between iron status and OP (14). No final conclusion has yet been

reached on the correlation between iron status and OP. Hence, it

is necessary to conduct a more in-depth study on the correlation

between iron status and OP at the gene level.

Mendelian randomization (MR) is an analytic approach to

assessing the causal association between a modifiable exposure

and a clinically relevant outcome (15). MR is based on Mendel's

law of inheritance (parental alleles are randomly assigned to

offspring) and uses genetic variants as instrumental variables

(IVs), which can improve the limitations of some observational

studies such as reverse causality, confounding factors, and

various biases (16). Using genetic variation as an IV for

exposure, MR studies can strengthen causal inferences about

exposure-outcome associations by reducing confounding factors

and reverse causality (17). To ensure the reliability of the results,

MR must meet three assumptions: IVs are closely related to

exposures, IVs are not related to other confounding factors, and

IVs affect outcomes only through exposures and not through any

other pathways (18). In recent years, accumulating evidence has

demonstrated the reliability of two-sample MR analysis. For

example, an existing MR analysis demonstrated that high iron

levels have a positive causality with gout but a negative causality

with rheumatoid arthritis (RA) (17). In addition, the genetic

causal association between major depressive disorder (MDD)

and osteoarthritis (OA) has also been documented in a recent

MR study (19). However, few studies have focused on the

association between iron status and OP using MR analysis.

This study selected four serum biomarkers related to iron

status (ferritin, iron, total iron binding capacity, and

transferrin saturation) to explore the genetic causal association

between iron status (exposure) and OP (outcome) through a

two-sample MR analysis.
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Materials and methods

Genome-wide association study
summary data for iron
status-related indicators

The genome-wide association study (GWAS) summary data

of iron status-related indicators was obtained from a meta-

analysis of three genome-wide association studies from

Iceland, the UK and Denmark of blood levels of ferritin

(N = 246,139), total iron binding capacity (N = 135,430), iron

(N = 163,511) and transferrin saturation (N = 131,471).

Information about the samples included in the study and data

processing can be found in previous studies (20).
Genome-wide association study
summary data for osteoporosis

Recent large-scale GWASs and meta-analyses of OP in

European populations (including OP N = 300,147, OP with

pathological fracture N = 239,702, and postmenopausal OP

with pathological fracture N = 173,601) were obtained from the

FinnGen consortium. All three subtypes of OP were defined by

the code M13 in the International Classification of Diseases,

Tenth Revision (ICD-10). Detailed information on the

participants, genotyping, imputation, and quality control can be

found on the FinnGen website (https://www.finngen.fi/en) (21).
Instrumental variable selection

We extracted genomic single-nucleotide polymorphisms

(SNPs) associated with exposure (P<5×10-8). None of the

instrumental SNPs were in linkage disequilibrium (LD). We

performed the clumping process (R2 < 0.001, Magna window

size = 10000 kb) to eliminate LD between the SNPs. The missing

SNPs in the LD control group were also deleted. SNPs with a

minor allele frequency (MAF) < 0.01 were removed. By default, if

the SNP for a particular request does not exist in the resulting

GWAS, the SNP (agent) with the requested SNP (target) in the LD

is searched. The LD agent was defined using 1000 genomes of

European sample data. In addition, to test whether there was a

weak tool deviation in IV, we used the F statistic (F = R2 [n-k-1]/k

[1-R2]), where R2 is the variance of exposure explained by selected

instrumental variables (obtained from the MR Steiger

directionality test), n is the sample size, and k is the total

number of variables. If the F statistic of IV is much greater than

10, it indicates that the possibility of weak instrument variable bias

is very small. In addition, we eliminated some IVs that may be

related to confounding factors. These confounding factors

included a lack of vitamin D and calcium, menopause and a

lack of exercise.
Frontiers in Endocrinology 03
Mendelian randomization analysis

The “TwoSampleMR” package (version 0.5.6) of R language

was used to analyze the genetic causal association between the

four indicators of iron status and OP using three methods:

inverse-variance weighted (IVW), MR–Egger, and weighted

median (22).

The results were mainly based on IVW. The IVW method

adopted a meta-analysis combined with Wald estimators from

different SNPs. If each genetic variant can be used as an effective

IV, the IVWmethod provides a consistent estimate of the causal

effect of exposure on the outcome.

IVW and MR–Egger were performed to determine the

heterogeneity of MR analysis results. Cochran’s Q statistic was

adopted for IVW analysis, and Rucker’s Q statistic was used for

MR–Egger analysis (23). The pleiotropy of MR results was

detected using MR–Egger regression with an intercept P value

> 0.05 indicating pleiotropy deficiency (24). A leave-one-SNP-

out analysis was also conducted to investigate the possibility that

the causal association between exposures and outcomes was

driven by a single SNP (25). Moreover, we calculated the

weighted median to further identify the potential causal

association between exposures and outcomes.

Among the five methods of MR analysis, we mainly focus on

the results of the IVW analysis. We considered that there was a

genetic causal association between exposure and outcome when

P<0.05 for the IVW analysis results. After correcting for multiple

testing, the significance threshold of this study was P<4.17×10-3

(0.05/12=4.17×10-3). IVW and MR–Egger examined

heterogeneity, and if P>0.05, there was no heterogeneity in our

MR analysis. When our MR analysis results were free of

heterogeneity/pleiotropy, we considered the IVW analysis

results to be reliable.
Results

After removing the SNPs of incompatible alleles, the details

of all independent SNPs associated with exposure are shown in

Supplementary Table 1. In our study, the F statistics of the

instrumental variables associated with exposure were all greater

than 10, indicating that the possibility of bias in weak

instrumental variables was very small.
The causal association between iron
status and OP

Based on IVW and the MR–Egger model, we found that

there was no causal association between iron status (ferritin,

iron, total iron binding capacity, or transferrin saturation) and

OP (Pbeta > 0.05 in all models) (Table 1). In addition, the results

of the weighted median showed that there was no potential
frontiersin.org
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causal association between OP and iron status indicators (Pbeta>

0.05 in all analyses) (Table 1).

The MR–Egger intercept in the analysis showed that there

was no horizontal multiplicity (MR–Egger intercept p value >

0.05) (Table 2). The MR–Egger test showed no heterogeneity in

the MR analysis of iron status (ferritin, iron, total iron binding

capacity, and transferrin saturation) and OP indicators (the Q-p

values of the IVW and MR–Egger were both greater than 0.05)

(Table 3). The leave-one-out analysis showed that the causal

estimation of OP and iron status indicators was not driven by

any single SNP (Supplementary Figures S1–4).
MR analyses for OP with
pathological fracture

IVW and MR–Egger analysis of OP with pathological fracture

and iron status indicators showed no potential genetic causal

association between the two (Pbeta> 0.05 in the two analyses)

(Table 1). The results of the weighted median were consistent with

those of IVW (Pbeta> 0.05 in all analyses) (Table 1).
Frontiers in Endocrinology 04
In addition, no horizontal pleiotropy was found in this

analysis (all intercept P values>0.05) (Table 2). The

heterogeneity analysis found no heterogeneity in this analysis,

with a Q-P value > 0.05 in the two analyses (Table 3). The results

of the leave-one-out method in the initial analysis and verified

analysis showed that no abnormal IV affected the overall results

in the two analyses (Supplementary Figures S5–8).
MR analyses for postmenopausal OP
with pathological fracture

There was no potential genetic causal association between

iron status and postmenopausal OP with pathological fracture

based on serum iron (Pbeta>0.05 in all models) (Table 1). In

addition, the results of the weighted median did not find a causal

association between postmenopausal OP and pathological

fracture and iron status indicators (Pbeta>0.05 in all

analyses) (Table 1).

No horizontal multiplicity was found in this analysis

(intercept P values in all analyses were greater than 0.05)
TABLE 1 MR estimates from different methods of assessing the causal effect of.

Exposure Outcome NSNP MR-Egger Weighted Median IVW

OR (95%
CI)

Beta SE P
value

OR (95%CI Beta SE P
value

OR 95%CI Beta SE P
value

serum
ferritin

Osteoporosis 71 0.81 (0.52,1.26) -0.20 0.22 0.36 0.88 (0.67,1.15) -0.12 0.13 0.34 1.03 1.03
(0.82,1.28)

0.02 0.11 0.82

Osteoporosis
fracture

71 1.42 (0.68,2.98) 0.35 0.37 0.35 1.34 (0.78,2.30) 0.29 0.27 0.28 1.41 1.41
(0.97,2.04)

0.34 0.18 0.07

Postmenopausal
osteoporotic
fracture

71 1.45 (0.60,3.54) 0.37 0.45 0.41 1.30 (0.72,2.33) 0.26 0.29 0.38 1.53 1.53
(0.98,2.38)

0.42 0.22 0.06

serum iron Osteoporosis 35 0.83 (0.64,1.09) -0.18 0.13 0.19 0.83 (0.72,1.08) -0.12 0.10 0.23 0.88 0.99
(0.85,1.15)

-0.01 0.07 0.89

Osteoporosis
fracture

35 0.91 (0.44,1.87) -0.09 0.36 0.83 0.91 (0.69,1.82) 0.11 0.24 0.66 1.12 1.06
(0.71,1.57)

0.05 0.20 0.78

Postmenopausal
osteoporotic
fracture

35 0.81 (0.35,1.91) -0.20 0.43 0.65 1.13 (0.68,1.87) 0.12 0.25 0.64 1.15 1.15
(0.71,1.85)

0.13 0.24 0.57

TIBC Osteoporosis 53 0.93 (0.80,1.11) -0.06 0.08 0.46 1.10 (0.94,1.28) 0.09 0.08 0.24 1.10 1.10
(0.99,1.21)

0.09 0.05 0.07

Osteoporosis
fracture

53 0.74 (0.52,1.06) -0.30 0.18 0.12 1.01 (0.74,1.36) 0.01 0.15 0.97 1.03 1.03
(0.82,1.29)

0.02 0.11 0.81

Postmenopausal
osteoporotic
fracture

53 0.77 (0.51,1.19) -0.25 0.21 0.25 0.93 (0.66,1.32) -0.06 0.17 0.71 1.02 1.02
(0.79,1.33)

0.02 0.13 0.86

TSAT Osteoporosis 51 1.02 (0.85,1.22) 0.02 0.09 0.83 1.03 (0.86,1.23) 0.02 0.09 0.78 0.96 0.96
(0.85,1.08)

-0.04 0.06 0.48

Osteoporosis
fracture

51 1.34 (0.89,2.05) 0.29 0.21 0.17 1.16 (0.82,1.65) 0.14 0.17 0.41 1.12 1.12
(0.86,1.47)

0.11 0.13 0.41

Postmenopausal
osteoporotic
fracture

51 1.340 (0.81,2.21) 0.29 0.25 0.26 1.19 (0.81,1.76) 0.17 0.19 0.38 0.5 1.12
(0.81,1.54)

0.11 0.16 0.50
fro
ntier
MR, Mendelian randomization; IVW, inverse variance weighting; CI, confidence interval; TIBC, total iron-binding capacity; TSAT, transferrin saturation.
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(Table 2). The heterogeneity analysis showed no heterogeneity in

the MR analysis of postmenopausal OP with pathological

fracture and iron status indicators (Q-P value>0.05 in the

IVW and MR–Egger analyses) (Table 3). The leave-one-out

analysis showed that the causal estimation of postmenopausal

OP with pathological fracture and iron status indicators was not

driven by any single SNP (Supplementary Figures S9–12).
Discussion

Studies have found that iron overload-induced ferroptosis in

osteoblasts can inhibit osteogenesis and promote osteoporosis

(26). Iron oxide nanoparticles (IONPs) can positively regulate

bone metabolism in vitro, and daily administration of IONPs

can alleviate oestrogen deficiency-induced osteoporosis by
Frontiers in Endocrinology 05
removing reactive oxygen species from the body (27).

Although iron is strongly associated with OP, no studies have

demonstrated a genetic causal association between iron status

and OP. Studying the genetic causal association between iron

status and OP is of considerable significance for research on the

aetiology, mechanism and treatment of OP. This is the first study

to explore the causality between iron status and OP through MR

analysis. No evidence of positive or negative causality between

iron status and OP was found, indicating that iron status had no

genetic causality with OP. However, other factors (such as the

environment) might also exert potential regulatory effects on the

correlation between iron status and OP.

Iron status imbalance is manifested by iron overload or iron

deficiency (28). Iron overload leads to an increase in serum iron,

ferritin, and transferrin saturation but a decrease in transferrin,

whereas iron deficiency shows the opposite trends (29). Previous
TABLE 2 MR-PRESSO analysis and MR-Egger intercept.

Exposure Outcome Egger-intercept intercept-P value

serum ferritin Osteoporosis 0.0099 0.2323

Osteoporosis fracture -0.0004 0.9747

Postmenopausal osteoporotic fracture 0.0022 0.8963

serum iron Osteoporosis 0.0133 0.1373

Osteoporosis fracture 0.0114 0.6273

Postmenopausal osteoporotic fracture 0.0260 0.3507

TIBC Osteoporosis 0.0152 0.2182

Osteoporosis fracture 0.0321 0.2614

Postmenopausal osteoporotic fracture 0.0268 0.1124

TSAT Osteoporosis -0.0059 0.3871

Osteoporosis fracture -0.0179 0.2594

Postmenopausal osteoporotic fracture -0.0176 0.3524
MR, Mendelian randomization; TIBC, total iron-binding capacity; TSAT, transferrin saturation.
TABLE 3 Heterogeneity tests.

Exposure Outcome IVW MR-Egger

Cochran’s Q Q- P value Cochran’s Q Q- P value

serum ferritin Osteoporosis 125.2424 0.1342 122.6614 0. 1125

Osteoporosis fracture 82.6913 0.1424 82.6900 0.1246

Postmenopausal osteoporotic fracture 96.7684 0.0188 96.7444 0.0754

serum iron Osteoporosis 35.6018 0.3928 33.2644 0.4544

Osteoporosis fracture 54.4280 0.0645 54.0347 0.2119

Postmenopausal osteoporotic fracture 64.6602 0.1202 62.9508 0.0813

TIBC Osteoporosis 47.8287 0.6386 42.2281 0.8043

Osteoporosis fracture 61.8315 0.1651 56.0622 0.2908

Postmenopausal osteoporotic fracture 68.5085 0.0621 65.1731 0.0876

TSAT Osteoporosis 51.5270 0.4138 50.7383 0.4049

Osteoporosis fracture 63.7456 0.0916 62.0955 0.0991

Postmenopausal osteoporotic fracture 74.9640 0.0724 73.6395 0.0829
fr
MR, Mendelian randomization; IVW, inverse variance weighting; TIBC, total iron-binding capacity; TSAT, transferrin saturation.
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studies have shown that these iron status-related indicators are

related to OP or low bone mineral density (BMD). For example,

the transferrin level in the serum of patients with osteoporotic

hip fracture is lower than that of normal subjects (30). A cross-

sectional study based on 4,000 women aged 12-49 found that

serum ferritin is negatively correlated with BMD (31).

Transferrin saturation shows a negative correlation with BMD

in patients with transfusion-dependent beta-thalassemia (32). A

controlled clinical trial revealed that the concentration of serum

iron in OP patients is significantly higher than that in healthy

controls, but it is believed that iron overload is a necessary but

not sufficient condition for OP because iron deficiency may also

affect OP (12). Moreover, a meta-analysis demonstrated a

correlation between serum iron and OP and identified a low

serum iron level as a risk factor for OP (33). Some scholars have

proposed that both iron overload and iron deficiency may

increase the risk of OP (13). High serum iron and ferritin

levels may be beneficial to elderly individuals. A study based

on 262 elderly rheumatoid arthritis (RA) patients found that the

serum iron level of elderly RA patients was positively correlated

with BMD (34). A study on elderly individuals aged 60 and

above also revealed a positive correlation between serum ferritin

and BMD (35). The association between iron status and OP

obtained in previous population studies may be due to

confounding factors such as sex and age (31, 35).

Notably, systemic iron overload is observed in

hemochromatosis protein (HFE) knockout mice, but it does

not have any effect on BMD and bone microstructure (14),

which is consistent with our results that found no causal

association between iron status and OP, at least at the genetic

level. Although a polygenic risk score study found that ferritin is

genetically correlated with systemic BMD (36), the sample was

from the Caucasus (our sample is European), and the research

method was not adequate to explain whether there is a causal

association between the two. Hence, the rationality of our

research results is still valid.

Iron overload-induced reactive oxygen species (ROS) can

damage DNA, proteins, and lipids, eventually leading to cell

death (37) and can also promote osteoclast differentiation and

proliferation via the NF-kB signalling pathway (11).

Furthermore, excessive iron inhibits osteoblast viability in a

concentration-dependent manner. Mild iron deficiency

facilitates osteoblast viability, whereas severe iron deficiency

impedes osteoblast formation (38). As the main endogenous

hormone regulating iron status, hepcidin can degrade

ferroportin (FPN), the sole iron exporter on the cell

membrane, resulting in an increase in intracellular iron levels

(39). It should be noted that hypoxia and inflammation may

affect the regulation of iron status by hepcidin (40), and OP is

closely related to inflammation (41). Therefore, it is reasonable
Frontiers in Endocrinology 06
to speculate that some inflammatory factors affect the

correlation between iron status and OP via hepcidin.

Oestrogen affects iron status via hepcidin, and menopausal

women often present with iron overload (42, 43). Moreover,

oestrogen can also directly affect bone metabolism (44, 45). It is

suggested that oestrogen may participate in the correlation

between OP and iron status. In addition, some scholars have

proposed the implication of environmental factors in the

relationship between iron status and OP. A tendency towards

OP (decreased BMD) has been found in some malnourished

young people (45). It is well established that iron deficiency is a

form of malnutrition, which suggests that a poor living

environment with long-term malnutrition may be a common

risk factor for iron status imbalance (long-term iron deficiency)

and OP. To summarize, the association between OP and iron

status is complex and dependent on multiple factors, but our

results at least show that OP and iron status have no genetic

causal association.

Observational epidemiological studies are prone to

confounding factors, reverse causation and various biases and

have generated findings that have proven to be unreliable

indicators of causal effects (16). However, MR studies are free

from the confounding factors (as in retrospective studies) and

reverse causality of traditional epidemiological approaches (46).

In addition, compared with observational epidemiological

studies, MR analysis does not involve high measurement costs

or a large number of appropriate biospecimens (16). Therefore,

MR analysis has high reliability and is widely used in many

studies (17, 47).

This study excludes a causal association between iron status

and OP through MR analysis based on large-scale GWAS

summary data, but it cannot be denied that iron status and

OP may still be related. The MR method is not without

limitations. First, MR analysis is heavily dependent on the

reliable associations of genetic variants with the exposure(s) of

interest, which are believed to have no effect on other

phenotypes that might confound the association between the

exposure and disease (48). In addition, the GWAS summary

datasets used in this study were not stratified by population. The

genotyping errors, phenotype misclassification, and

confounding factors due to population stratification may cause

spurious genetic associations, which will in fact be biased

instruments for MR (15).
Conclusion

This study shows that there are no positive or negative

genetic causal associations between iron status and OP, but the

influence of factors other than heredity cannot be ruled out.
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