41 research outputs found

    O-Glycosylation of the N-terminal region of the serine-rich adhesin Srr1 of Streptococcus agalactiae explored by mass spectrometry.

    Get PDF
    International audienceSerine-rich (Srr) proteins exposed at the surface of Gram-positive bacteria are a family of adhesins that contribute to the virulence of pathogenic staphylococci and streptococci. Lectin-binding experiments have previously shown that Srr proteins are heavily glycosylated. We report here the first mass-spectrometry analysis of the glycosylation of Streptococcus agalactiae Srr1. After Srr1 enrichment and trypsin digestion, potential glycopeptides were identified in collision induced dissociation spectra using X! Tandem. The approach was then refined using higher energy collisional dissociation fragmentation which led to the simultaneous loss of sugar residues, production of diagnostic oxonium ions and backbone fragmentation for glycopeptides. This feature was exploited in a new open source software tool (SpectrumFinder) developed for this work. By combining these approaches, 27 glycopeptides corresponding to six different segments of the N-terminal region of Srr1 [93-639] were identified. Our data unambiguously indicate that the same protein residue can be modified with different glycan combinations including N-acetylhexosamine, hexose, and a novel modification that was identified as O-acetylated-N-acetylhexosamine. Lectin binding and monosaccharide composition analysis strongly suggested that HexNAc and Hex correspond to N-acetylglucosamine and glucose, respectively. The same protein segment can be modified with a variety of glycans generating a wide structural diversity of Srr1. Electron transfer dissociation was used to assign glycosylation sites leading to the unambiguous identification of six serines and one threonine residues. Analysis of purified Srr1 produced in mutant strains lacking accessory glycosyltransferase encoding genes demonstrates that O-GlcNAcylation is an initial step in Srr1 glycosylation that is likely required for subsequent decoration with Hex. In summary, our data obtained by a combination of fragmentation mass spectrometry techniques associated to a new software tool, demonstrate glycosylation heterogeneity of Srr1, characterize a new protein modification, and identify six glycosylation sites located in the N-terminal region of the protein

    Evidence for the Sialylation of PilA, the PI-2a Pilus-Associated Adhesin of Streptococcus agalactiae Strain NEM316.

    Get PDF
    International audienceStreptococcus agalactiae (or Group B Streptococcus, GBS) is a commensal bacterium present in the intestinal and urinary tracts of approximately 30% of humans. We and others previously showed that the PI-2a pilus polymers, made of the backbone pilin PilB, the tip adhesin PilA and the cell wall anchor protein PilC, promote adhesion to host epithelia and biofilm formation. Affinity-purified PI-2a pili from GBS strain NEM316 were recognized by N-acetylneuraminic acid (NeuNAc, also known as sialic acid) specific lectins such as Elderberry Bark Lectin (EBL) suggesting that pili are sialylated. Glycan profiling with twenty different lectins combined with monosaccharide composition by HPLC suggested that affinity-purified PI-2a pili are modified by N-glycosylation and decorated with sialic acid attached to terminal galactose. Analysis of various relevant mutants in the PI-2a pilus operon by flow-cytometry and electron microscopy analyses pointed to PilA as the pilus subunit modified by glycosylation. Double labeling using PilB antibody and EBL lectin, which specifically recognizes N-acetylneuraminic acid attached to galactose in α-2, 6, revealed a characteristic binding of EBL at the tip of the pilus structures, highly reminiscent of PilA localization. Expression of a secreted form of PilA using an inducible promoter showed that this recombinant PilA binds specifically to EBL lectin when produced in the native GBS context. In silico search for potentially glycosylated asparagine residues in PilA sequence pointed to N427 and N597, which appear conserved and exposed in the close homolog RrgA from S. pneumoniae, as likely candidates. Conversion of these two asparagyl residues to glutamyl resulted in a higher instability of PilA. Our results provide the first evidence that the tip PilA adhesin can be glycosylated, and suggest that this modification is critical for PilA stability and may potentially influence interactions with the host

    Properties of probiotic bacteria explored by proteomic approaches

    No full text
    The study of health-beneficial effects that probiotic bacteriacan exert on humans and animals is at its beginning. Pendingscientific questions include the identification of molecularmarkers of the health-promoting activity of specific strains,which may be used to select novel probiotic strains and to gainunderstanding of the mechanisms underlying their effects. Inthat perspective, the role of bacterial proteins must beevaluated, placing proteomics-based approaches at the coreof the field. Until now, most proteomic analyses focused on thedynamics of abundant cytoplasmic proteins during adaptationof bacteria to conditions mimicking the gastro-intestinal tractenvironment. The development of in silico and experimentalprocedures allowing identification and quantification ofsurface-exposed and secreted proteins should boost ourunderstanding of bacteria–host crosstalk

    Listeria monocytogenes exploits the MICOS complex subunit Mic10 to promote mitochondrial fragmentation and cellular infection

    Get PDF
    International audienceMitochondrial function adapts to cellular demands and is affected by the ability of the organelle to undergo fusion and fission in response to physiological and non-physiological cues. We previously showed that infection with the human bacterial pathogen Listeria monocytogenes elicits dramatic mitochondrial fission and causes a decrease in the mitochondrial membrane potential. Using quantitative proteomics of purified mitochondria, we searched for host factors involved in L. monocytogenes-induced mitochondrial fission. We found that Mic10, a critical component of the mitochondrial contact site and cristae organizing system (MICOS) complex is significantly enriched in mitochondria isolated from cells infected with wild-type L. monocytogenes, but not with mutant bacteria not expressing the pore-forming toxin listeriolysin O. Increased mitochondrial Mic10 levels did not correlate with upregulated gene transcription, suggesting a post-transcriptional regulatory mechanism. We show that Mic10 is necessary for L. monocytogenes-induced mitochondrial network fragmentation, and that it contributes to L. monocytogenes cellular infection independently of MICOS proteins Mic13, Mic26 and Mic27. Together, L. monocytogenes infection allowed us to uncover a role for Mic10 in mitochondrial fission

    Proteomic analysis of plasma extracellular vesicles reveals mitochondrial stress upon HTLV-1 infection

    No full text
    International audienceExtracellular vesicles (EVs) can participate in intercellular communication and pathogenesis. EVs contain many cargos, including proteins, and the composition of EVs differs between cell-types and activation levels. Thus, plasma EVs can be used as a biomarker of systemic response to infection and/ or disease progression. In this study, we aimed at describing alterations in the protein content of plasma EVs upon infection with the human T-lymphotropic retrovirus type 1 (HTLV-1). HTLV-1 is the etiological agent of a lymphoproliferative disease (ATL) and a series of inflammatory diseases, including a neurodegenerative inflammatory disease (HAM/TSP). We found that plasma EVs are more abundant and smaller in HTLV-1 asymptomatic carriers or HAM/TSP patients when compared to uninfected healthy donors. Moreover, EVs from HTLV-1 infected donors contain markers of metabolic and mitochondrial stress

    Infection reveals a mModification of SIRT2 critical for chromatin association

    No full text
    Sirtuin 2 is a nicotinamide-adenine-dinucleotide-dependent deacetylase that regulates cell processes such as carcinogenesis, cell cycle, DNA damage, and infection. Subcellular localization of SIRT2 is crucial for its function but is poorly understood. Infection with the bacterial pathogen Listeria monocytogenes, which relocalizes SIRT2 from the cytoplasm to the chromatin, provides an ideal stimulus for the molecular study of this process. In this report, we provide a map of SIRT2 post-translational modification sites and focus on serine 25 phosphorylation. We show that infection specifically induces dephosphorylation of S25, an event essential for SIRT2 chromatin association. Furthermore, we identify a nuclear complex formed by the phosphatases PPM1A and PPM1B, with SIRT2 essential for controlling H3K18 deacetylation and SIRT2-mediated gene repression during infection and necessary for a productive Listeria infection. This study reveals a molecular mechanism regulating SIRT2 function and localization, paving the way for understanding other SIRT2-regulated cellular processes

    Single locus phosphoproteomics reveals phosphorylation of RPA-1 is required for generation of single-strand DNA following a break at a subtelomeric locus

    No full text
    Damage to the genetic material of the cell poses a universal threat to all forms of life. Central to the DNA damage response (DDR) is a phosphorylation signalling cascade that leads to the co-ordination of the cellular response to a DNA break. Identifying the proteins that are phosphorylated is crucial to understanding the mechanisms underlying this DDR. We have used SILAC-based quantitative phosphoproteomics to profile changes in phosphorylation site abundance following a single double strand break (DSB) at a chromosome internal locus and the subtelomeric bloodstream form expression site in Trypanosoma brucei . We report >6500 phosphorylation sites, including a core set of 211 DSB responsive phosphorylation sites. Along with phosphorylation of canonical DNA damage factors, we find that there is a striking distinction between the proteins phosphorylated in response to a chromosome internal DSB and one at the active BES and describe a single phosphorylation event on Replication factor A (RPA) 1 that is required for efficient resection at a bloodstream form expression site

    Comparison of a human neuronal model proteome upon Japanese encephalitis or West Nile Virus infection and potential role of mosquito saliva in neuropathogenesis

    No full text
    International audienceNeurotropic flavivirus Japanese encephalitis virus (JEV) and West Nile virus (WNV) are amongst the leading causes of encephalitis. Using label-free quantitative proteomics, we identified proteins differentially expressed upon JEV (gp-3, RP9) or WNV (IS98) infection of human neuroblastoma cells. Data are available via ProteomeXchange with identifier PXD016805. Both viruses were associated with the up-regulation of immune response (IFIT1/3/5, ISG15, OAS, STAT1, IRF9) and the down-regulation of SSBP2 and PAM, involved in gene expression and in neuropeptide amidation respectively. Proteins associated to membranes, involved in extracellular matrix organization and collagen metabolism represented major clusters down-regulated by JEV and WNV. Moreover, transcription regulation and mRNA processing clusters were also heavily regulated by both viruses. The proteome of neuroblastoma cells infected by JEV or WNV was significantly modulated in the presence of mosquito saliva, but distinct patterns were associated to each virus. Mosquito saliva favored modulation of proteins associated with gene regulation in JEV infected neuroblastoma cells while modulation of proteins associated with protein maturation, signal transduction and ion transporters was found in WNV infected neuroblastoma cells
    corecore