90 research outputs found

    Recent enhancements to the GRIDGEN structured grid generation system

    Get PDF
    Significant enhancements are being implemented into the GRIDGEN3D, multiple block, structured grid generation software. Automatic, point-to-point, interblock connectivity will be possible through the addition of the domain entity to GRIDBLOCK's block construction process. Also, the unification of GRIDGEN2D and GRIDBLOCK has begun with the addition of edge grid point distribution capability to GRIDBLOCK. The geometric accuracy of surface grids and the ease with which databases may be obtained is being improved by adding support for standard computer-aided design formats (e.g., PATRAN Neutral and IGES files). Finally, volume grid quality was improved through addition of new SOR algorithm features and the new hybrid control function type to GRIDGEN3D

    Automatic structured grid generation using Gridgen (some restrictions apply)

    Get PDF
    The authors have noticed in the recent grid generation literature an emphasis on the automation of structured grid generation. The motivation behind such work is clear; grid generation is easily the most despised task in the grid-analyze-visualize triad of computational analysis (CA). However, because grid generation is closely coupled to both the design and analysis software and because quantitative measures of grid quality are lacking, 'push button' grid generation usually results in a compromise between speed, control, and quality. Overt emphasis on automation obscures the substantive issues of providing users with flexible tools for generating and modifying high quality grids in a design environment. In support of this paper's tongue-in-cheek title, many features of the Gridgen software are described. Gridgen is by no stretch of the imagination an automatic grid generator. Despite this fact, the code does utilize many automation techniques that permit interesting regenerative features

    Summary of the 1st AIAA Geometry and Mesh Generation Workshop (GMGW-1) and Future Plans

    Get PDF
    The 1st AIAA Geometry and Mesh Generation Workshop (GMGW-1) was held in conjunction with the AIAA Aviation Forum and Exposition 2017 and in collaboration with the 3rd AIAA Computational Fluid Dynamics (CFD) High Lift Prediction Workshop (HiLiftPW-3). As the first AIAA workshop on these topics, GMGW-1's broad objectives were to assess the current state-of-the art in geometry preprocessing and mesh generation technology as well as software as applied to aircraft and spacecraft systems. The workshop was intended to identify and develop understanding of areas of needed improvement in terms of performance, accuracy, and applicability. It was also to provide a foundation for documenting best practices for geometry preprocessing and mesh generation. The genesis of GMGW-1 is found in the indictments levied against geometry preprocessing and mesh generation - not undeservedly - by the NASA CFD Vision 2030 Study. In order to create a reference against which future progress in geometry preprocessing and mesh generation can be measured, the organizers of GMGW-1, with the assistance of the organizers of HiLiftPW- 3, focused GMGW-1 on generation of meshes of the NASA High Lift Common Research Model (HL-CRM). Some of the generated meshes were provided for use by the participants in HiLiftPW-3. All meshes and the processes by which they were generated were analyzed by GMGW-1 as a first assessment of state of the art practices. The results of GMGW-1 added quantitative detail to known problem areas including geometry modeling, data interoperability, and amount of human intervention. They do provide a clear path toward a vision of geometry preprocessing and mesh generation in the year 2030. The next milepost along this path will be a second workshop

    The dust content of the Crab Nebula

    Get PDF
    We have modelled the near-infrared to radio images of the Crab Nebula with a Bayesian SED model to simultaneously fit its synchrotron, interstellar (IS), and supernova dust emission. We infer an IS dust extinction map with an average AV = 1.08 ± 0.38 mag, consistent with a small contribution (22 per cent) to the Crab’s overall infrared emission. The Crab’s supernova dust mass is estimated to be between 0.032 and 0.049 M (for amorphous carbon grains) with an average dust temperature Tdust = 41 ± 3 K, corresponding to a dust condensation efficiency of 8–12 per cent. This revised dust mass is up to an order of magnitude lower than some previous estimates, which can be attributed to our different IS dust corrections, lower SPIRE flux densities, and higher dust temperatures than were used in previous studies. The dust within the Crab is predominantly found in dense filaments south of the pulsar, with an average V-band dust extinction of AV = 0.20–0.39 mag, consistent with recent optical dust extinction studies. The modelled synchrotron power-law spectrum is consistent with a radio spectral index αradio = 0.297 ± 0.009 and an infrared spectral index αIR = 0.429 ± 0.021. We have identified a millimetre excess emission in the Crab’s central regions, and argue that it most likely results from two distinct populations of synchrotron emitting particles. We conclude that the Crab’s efficient dust condensation (8–12 per cent) provides further evidence for a scenario where supernovae can provide substantial contributions to the IS dust budgets in galaxies

    Prevalence and recurrence of pica behaviors in early childhood within the ALSPAC birth cohort

    Get PDF
    Objective: The present study examined prevalence and correlates of pica behaviors during childhood using data from the Avon Longitudinal Study of Parents and Children (ALSPAC) study. Method: Data on 10,109 caregivers from the ALSPAC study who reported pica behavior at 36, 54, 65, 77, and 115 months on their child were included. Autism was obtained through clinical and education records, while DD was derived from the Denver Developmental Screening Test. Results: A total of 312 parents (3.08%) reported pica behaviors in their child. Of these, 19.55% reported pica at least at two waves (n = 61). Pica was most common at 36 months (N = 226; 2.29%) and decreased as children aged. A significant association was found between pica and autism at all five waves (p < .001). There was a significant relationship between pica and DD, with individuals with DD more likely to experience pica than those without DD at 36 (p = .01), and 54 (p < .001), 65 (p = .04), 77 (p < .001), and 115 months (p = .006). Exploratory analyses examined pica behaviors with broader eating difficulties and child body mass index. Discussion: This study enhances understanding of childhood pica behaviors, addressing a significant gap in knowledge. Pica occurrence in the general population is poorly understood due to few epidemiological studies. Findings from the present study indicate pica is an uncommon behavior in childhood; however, children with DD or autism may benefit from pica screening and diagnosis between ages 36 and 115 months. Children who exhibit undereating, overeating, and food fussiness may also engage in pica behaviors

    Cognitive deficits in childhood, adolescence and adulthood in 22q11.2 deletion syndrome and association with psychopathology

    Get PDF
    22q11.2 Deletion Syndrome (22q11.2DS) is associated with high risk of psychiatric disorders and cognitive impairment. It remains unclear to what extent key cognitive skills are associated with psychopathology, and whether cognition is stable over time in 22q11.2DS. 236 children, adolescents and adults with 22q11.2DS and 106 typically developing controls were recruited from three sites across Europe. Measures of IQ, processing speed, sustained attention, spatial working memory and psychiatric assessments were completed. Cognitive performance in individuals was calculated relative to controls in different age groups (children (6–9 years), adolescents (10–17 years), adults (18+ years)). Individuals with 22q11.2DS exhibited cognitive impairment and higher rates of psychiatric disorders compared to typically developing controls. Presence of Autism Spectrum Disorder symptoms was associated with greater deficits in processing speed, sustained attention and working memory in adolescents but not children. Attention deficit hyperactivity disorder in children and adolescents and psychotic disorder in adulthood was associated with sustained attention impairment. Processing speed and working memory were more impaired in children and adults with 22q11.2DS respectively, whereas the deficit in sustained attention was present from childhood and remained static over developmental stages. Psychopathology was associated with cognitive profile of individuals with 22q11.2DS in an age-specific and domain-specific manner. Furthermore, magnitude of cognitive impairment differed by developmental stage in 22q11.2DS and the pattern differed by domain

    The dust content of the Crab Nebula

    Get PDF
    We have modelled the near-infrared to radio images of the Crab Nebula with a Bayesian SED model to simultaneously fit its synchrotron, interstellar and supernova dust emission. We infer an interstellar dust extinction map with an average AV = 1.08 ± 0.38 mag, consistent with a small contribution (≲ 22%) to the Crab’s overall infrared emission. The Crab’s supernova dust mass is estimated to be between 0.032 and 0.049 M⊙ (for amorphous carbon grains) with an average dust temperature Tdust=41±3 K, corresponding to a dust condensation efficiency of 8-12%. This revised dust mass is up to an order of magnitude lower than some previous estimates, which can be attributed to our different interstellar dust corrections, lower SPIRE flux densities, and higher dust temperatures than were used in previous studies. The dust within the Crab is predominantly found in dense filaments south of the pulsar, with an average V band dust extinction of AV = 0.20 − 0.39 mag, consistent with recent optical dust extinction studies. The modelled synchrotron power-law spectrum is consistent with a radio spectral index αradio=0.297±0.009 and an infrared spectral index αIR=0.429±0.021. We have identified a millimetre excess emission in the Crab’s central regions, and argue that it most likely results from two distinct populations of synchrotron emitting particles. We conclude that the Crab’s efficient dust condensation (8-12%) provides further evidence for a scenario where supernovae can provide substantial contributions to the interstellar dust budgets in galaxies

    Copy number variants (CNVs): a powerful tool for iPSC-based modelling of ASD

    Get PDF
    Patients diagnosed with chromosome microdeletions or duplications, known as copy number variants (CNVs), present a unique opportunity to investigate the relationship between patient genotype and cell phenotype. CNVs have high genetic penetrance and give a good correlation between gene locus and patient clinical phenotype. This is especially effective for the study of patients with neurodevelopmental disorders (NDD), including those falling within the autism spectrum disorders (ASD). A key question is whether this correlation between genetics and clinical presentation at the level of the patient can be translated to the cell phenotypes arising from the neurodevelopment of patient induced pluripotent stem cells (iPSCs). Here, we examine how iPSCs derived from ASD patients with an associated CNV inform our understanding of the genetic and biological mechanisms underlying the aetiology of ASD. We consider selection of genetically characterised patient iPSCs; use of appropriate control lines; aspects of human neurocellular biology that can capture in vitro the patient clinical phenotype; and current limitations of patient iPSC-based studies. Finally, we consider how future research may be enhanced to maximise the utility of CNV patients for research of pathological mechanisms or therapeutic targets

    DOSCATs: Double standards for protein quantification

    Get PDF
    The two most common techniques for absolute protein quantification are based on either mass spectrometry (MS) or on immunochemical techniques, such as western blotting (WB). Western blotting is most often used for protein identification or relative quantification, but can also be deployed for absolute quantification if appropriate calibration standards are used. MS based techniques offer superior data quality and reproducibility, but WB offers greater sensitivity and accessibility to most researchers. It would be advantageous to apply both techniques for orthogonal quantification, but workflows rarely overlap. We describe DOSCATs (DOuble Standard conCATamers), novel calibration standards based on QconCAT technology, to unite these platforms. DOSCATs combine a series of epitope sequences concatenated with tryptic peptides in a single artificial protein to create internal tryptic peptide standards for MS as well as an intact protein bearing multiple linear epitopes. A DOSCAT protein was designed and constructed to quantify five proteins of the NF-κB pathway. For three target proteins, protein fold change and absolute copy per cell values measured by MS and WB were in excellent agreement. This demonstrates that DOSCATs can be used as multiplexed, dual purpose standards, readily deployed in a single workflow, supporting seamless quantitative transition from MS to WB
    corecore