
N92-24414

RECENT ENHANCEMENTS TO THE

GRIDGEN STRUCTURED GRID GENERATION SYSTEM f

John P. Steinbrenner and John R. Chawner

MDA Engineering, Inc.

Arlington, TX

ABSTRACT

Significant enhancements are being implemented into the GRIDGEN 3D, multiple block,

structured grid generation software. Automatic, point-to-point, interblock connectivity will be

possible through the addition of the domain entity to GRIDBLOCK's block construction process.

Also, the unification of GRIDGEN2D and GRIDBLOCK has begun with the addition of edge grid

point distribution capability to GRIDBLOCK. The geometric accuracy of surface grids and the ease

with which databases may be obtained is being improved by adding support for standard CAD file

formats (e.g., PATRAN Neutral and IGES files). Finally, volume grid quality has been improved

through addition of new SOR algorithm features and the new hybrid control function type to

GRIDGEN3D.

LIST OF SYMBOLS

---- [ X y Z IT Cartesian coordinate vector

((,7/,_) computational coordinates

(i,j,k) computational indices

((I), _,fl) control functions

INTRODUCTION

Grid generation is perhaps the most manhour intensive task in the process of applying

computational fluid dynamics (CFD) methods to complex configurations. This conclusion is

supported in the findings of two separate CFD committees: [1] [2]. Not surprisingly, CFD research

in the past few years has produced several suites of grid generation software, each aimed at reducing

the so-called grid generation bottleneck. This software follows a marked trend towards development

of interactive, graphical tools [3] [4] [5]. The trend is quite logical if one considers the speed at

which workstation technology is advancing and the fact that grid generation is a highly

visual-oriented, geometry-based technology.

tWork done on subcontract to Computer Sciences Corp. (CSC-ATD-ER-92-B-117)on contract to NASA Langley

Research Center (NAS1-19038)

253

https://ntrs.nasa.gov/search.jsp?R=19920015171 2020-03-17T12:07:15+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42812581?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


interactive batch

I GRIDBLOCK I

I GRIDGEN2D L,"

I GRIDVUE3D 1_

/I GRIDGEN3D I

Figure 1: Schematic of the GRIDGEN process.

One particular example of a graphical, interactive software system developed for the generation

of multiple block, structured grids is GRIDGEN [9]. The GRIDGEN system consists of four

separate codes which accomplish distinct tasks of the grid generation process in the order indicated

in Figure 1. The process begins with a user supplied database, which consists of any number of

discrete M x N networks of points. The collection of networks is used by GRIDGEN only to define

the 3D surface shape of the configuration. The first code, GRIDBLOCK (Figure 2), is used to

decompose the domain around the database into a multiple block structure and to assign a

computational coordinate system to each block. GRIDGEN2D (Figure 3), the second code, is then

used to generate, using algebraic and elliptic partial differential equation (PDE) methods, grid

points on the twelve edges and six faces of each block. The third code, GRIDGEN3D, uses algebraic

and elliptic PDE methods to generate the grid points within each block. Finally, GRIDVUE3D is

used for visual examination of the completed multiple block volume grid. GRIDBLOCK,

GRIDGEN2D, and GRIDVUE3D are interactive graphics codes written specifically for the Silicon

Graphics, Inc. IRIS workstations (they also run on IBM RS/6000 workstations with the GL

Graphics software), while GRIDGEN3D is a batch code written for a Cray X/MP supercomputer.

254

Figure 2: A typical GRIDBLOCK screen.



Figure 3: A typical GRIDGEN2D screen.

While the initial releaseof GRIDGEN (Version6) hasbeenvery successful,there remainsplenty
of room for improvement. Therefore, severalchangesare beingmadeto GRIDGEN that will
eventually result in Version8. Thesetasksmay beorganizedin three categories:thosedesignedto
increaseuserefficiency,thosedesignedto improvegeometricaccuracy,and thosedesignedto
improve grid quality. First, userefficiencyhasbeenimproved through addition of edgegrid point
generationcapability to GRIDBLOCK, creation of the domainentity in GRIDBLOCK, and
addition of low-levelautomation to GRIDBLOCI< and GRIDGEN2D. Second,surfacegrid
geometricaccuracyand the easewith which databasefilescan be obtained is being improved
through supporting the popular CAD file formats PATRAN Neutral File and IGES. f'inally, grid
quality hasbeenimproved through upgradesto the control function types and numerical algorithm
usedwith the PDE solver in both GRIDGEN2D and GRIDGEN3D. The remaining sectionsof this
paper describethe rationale behind and benefitsof eachof thesetasks.

IMPROVED USER EFFICIENCY

One of the overall goalsof the GRIDGEN softwareis to make the usera moreefficient grid
generator. This is attempted through the useof interactive computergraphicssuch that the userhas
immediate graphical feedbackon eachstepof the generationprocess.One path toward improved
efficiencyis to consolidateGRIDBLOCK and GRIDGEN2D into a singlecode,thereby eliminating
much userconfusion. Part of this long term goal is accomplishedwithin Version8 by adding
GRIDGEN2D's edgepoint distribution capability to GRIDBLOCI<. Further improvementsare
madein the blocking processby adding the domainentity to GRIDBLOCK such that the software
candetermineall point-to-point interblock connectionsautomatically. Finally, the usersworkload is
reducedthrough the addition of tools to perform severalgrid generationfunctions automatically.

EdgePoint Distribution in GRIDBLOCK

Oncethe databasedefining the shapeof the configuration hasbeenloadedinto GRIDBLOCK
and visually inspected,the userbeginsdecomposingthe domain by drawing the Dinesthat will

255



eventually make up the block edges. These 3D lines are known as connectors. Connectors may be

made up of any number of segments. Segments are the primitive line types available and include

(see Figure 4): straight lines, elliptical arcs, splined curves, and lines constrained to the database.

The connectors may be drawn as though the user were sketching them with pencil and paper; no

regard need be given to the order or direction that they are drawn, nor what block they'll be in.

The example in Figure 4 shows the connectors that define one block of a system.

Figure 4: Segment types in GRIDBLOCK.

Block construction in GRIDBLOCK Version 6 proceeded by grouping a number of connectors

into a block, and then by specifying orientation of the computational coordinate system within the

block. Computational dimensions (i.e., number of grid points in each computational direction)

would then be assigned, and finally interblock connections and flow boundary conditions (BC's)

would be explicitly set by the user. Generation of actual grid points began within GRIDGEN2D,

first by distribution of points in 1D along block edges and then in 2D on block faces.

The separation of the tasks of choosing the number of points in a block (in GRIDBLOCK) and

distributing the grid points on edges (in GRIDGEN2D) could sometimes cause problems for the

user. Only upon distributing points along edges in GRIDGEN2D did it become apparent whether

the number of points chosen in GRIDBLOCK was appropriate. In cases where the user decided that

too few or too many points had been specified he or she would exit GRIDGEN2D, re-run

GRIDBLOCK, and change the block size. Unfortunately, changing the block size in GRIDBLOCK

also required the user to manually re-set all interblock connections and BC's. This would affect

most every other block in the system resulting in a lot of re-work.

The solution to this problem was to add the capability to distribute grid points on connectors to

GRIDBLOCK Version 8. This allows the user to immediately determine whether or not sufficient

points have been chosen for the distribution function, thereby eliminating the need for tedious

rework. Part of this new capability consists of adding new segment types to GRIDBLOCK: a

surface cubic segment, a piecewise cubic polynomial spline with Bessel interpolants constrained to

the database; and a user defined segment read fi'om a formatted ASCII file.

2_6



Connectors are assigned a computational dimension via type-in or by copying the dimension of

another connector. Grid point distribution is then controlled interactively using tools that combine

the functionality of the edge subdivision and grid point distribution menus of GRIDGEN2D

Version 6. This combined interface provides a more intuitive and considerably streamlined way of

distributing grid points on the connector. GRIDGEN2D's distribution functions (2-sided Vinokur,

1-sided hyperbolic sine and hyperbolic tangent, 1-sided geometric, and equal spacing) have been

added to GRIDBLOCK. One new distribution function is based on Monotonic Rational Quadratic

Splines (MRQS) [6], whereby a grid point may be placed at a specific location with the stipulation

that the grid point distribution vary smoothly across it.

In Version 8, connectors may be redimensioned at any time with minimal effort, and all features

of the previous grid point distribution will automatically be applied to the new grid points

(Figure 5). Relative grid point distributions are also preserved after the shape of the connector is

modified (Figure 6). This is a significant improvement over the current process in GRIDGEN2D

Version 6, where the grid points must be redistributed manually if the edge shape is changed and

where the edge shape must be redefined if the distribution of points is to be changed.

Figure 5: In GRIDBLOCK Version 8 the relative grid point clustering is maintained after the number

of points is changed.

Figure 6: In GRIDBLOCK Version 8 the relative grid point clustering is maintained after the con-

nector shape is modified.

An additional feature of GRIDBLOCK Version 8 is that database constrained segment types are

maintained in parametric coordinates. This means that when the segment is edited in

GRIDBLOCK the points will remain on the database, whereas in Version 6 they could be moved off

the surface. This feature also implies that edge shapes will not have to be re-drawn in

GRIDGEN2D in order to use the database parametric elliptic PDE solver.

Development of the Domain Entity

The second major addition to GRIDBLOCK Version 8 is the development of a new methodology

for block construction. The impetus for this methodology comes largely from the fact that

257



GRIDGEN allows non-full face interblock connections and flow boundary conditions, a general

boundary condition type supported by a number of flow solvers [7],[8]. Earlier it was mentioned

that GRIDBLOCK Version 6 defined blocks by the connectors that formed the twelve physical

edges of the block. No geometrical information pertaining to regions interior to a block's face (such

as the horizontal connector between blocks B and C that also lies in the face of Block A in Figure 7)

was associated with that block. Hence, it was impossible to determine inter-block connections

automatically. The user was responsible for setting all connections manually by typing in block

numbers, face numbers, and index ranges.* This error-prone procedure was the most confusing step

in GRIDBLOCK Version 6. Further, the fact that dimensions were assigned independently on the

block level allowed inconsistent block dimensions to go undetected until the user attempted to set

an impossible connection such as the one in Figure 8. Problems of this sort are being eliminated in

GRIDBLOCK Version 8 with the introduction of a new entity, called a domain, which fits between

connectors and blocks.

Figure 7: In GRIDBLOCN Version 6 blocks were represented by connectors and nodes only.

Figure 8: In GRIDBLOCK Version 6 inconsistencies in dimensioning could lead to impossible con-
nections.

A domain is a 2D region on the face of a block. It is analogous to a subface in GRIDGEN2D

terminology. A domain is created by defining a closed loop of connectors that outlines a region of a

face of a block. This may either be a region of a particular BC, a surface on which two blocks

connect, or a subset or superset of either. The sole requirement is that the domain represent a

tNote that if GRIDGEN were limited to full face to face connections, the necessary connections could be determined
automatically.

258



computationally rectangular region of the computational domain. A single surface represented by

numerous domains is shown in Figure 9.

Figure 9: In GRIDBLOCK Version 8 a single block face may be represented by several domains.

Dimensional inconsistencies are now caught by GRIDBLOCK Version 8 during domain

construction rather than in connection specification. This is possible since connectors have a

number of grid points associated with them. When a domain is completed, it is compared to all

other domains to insure uniqueness. A check is also made to see if two adjacent edges in the domain

overlap with any other domain. If so, the user may have inadvertently defined the same physical

surface by two differing domains, a mistake likely to cause problems for the remainder of the process

(see Figure 10). Alternately, two domains with coincident adjacent edges may indeed represent

different surfaces, as illustrated in Figure 11. The wing in this figure with a cusped trailing edge has

domain B defined on the upper wing and domain A defined on the lower wing. The trailing edge

connectors are coincident, as are the short connectors adjacent to the trailing edge at the wing root

and tip. A blind description of the two domains might suggest that they lie on the same surface

when in fact they do not. GRIDBLOCK will warn the user to exercise care under such

circumstances. User generation of unique domains is expected to be a source of confusion for the

novice user, and so additional tools are being added to GRIDBLOCK to ease confusion. For

example, domain splitting and concatenation routines are included.

Domain 1 Domain 2

Figure 10: An example of overlapping domains.

259



DomainB

)omainA

Figure ll: An example of non-overlapping domains with coincident edges.

In GRIDBLOCK Version 8, a block is constructed by interactively grouping domains into the

six faces of the block. A face may consist of a single domain. However, the more interesting case is

when the face is comprised of several domains (see Figure 9). Here, the user builds the face by

systematically selecting the component domains that make up the face. The algorithm developed

for face construction is order dependent, and as such allows faces to be constructed from an

ambiguous set of domains in an unambiguous way. For example, the C-type face in Figure 12

representing a wing and wake region by four domains may be defined unambiguously by connecting

the domains in the order A, B, C and A again. Without any order, it would be impossible to

ascertain whether the domains connect at the leading edge, the wing trailing edge, the downstream

connector, or at the inboard or outboard connectors on domain A.

The face construction algorithm developed for GRIDBLOCK will detect errors in face

dimensioning as well as connections which result in a non-rectangular face. When the final face is

assigned to a given block, dimensional and geometrical consistency is automatically checked. Block

construction is then completed by assigning computational directions s¢, r/, _ at a corner of the

block. This too is done graphically, in a manner similar to GRIDBLOCK Version 6. Since a block's

computational orientation is the final step in block construction, later reorientation of a block is

trivial. Hence, what formerly required a complete respecification of the block shape, dimensions,

and interblock connections and BC's may now be achieved by a single, simple command.

ain A
DomainB

Figure 12: A face represented by the four domains A,B,C,A.

If the blocks have been defined without domain overlap, each domain will be assigned to a block

exactly zero, one or two times. § If a domain is not assigned to any block, it is a superfluous domain

§A domain defined more than twice signifies an impossible blocking structure, usually detectable by the user.



and is not part of the developing blocking system. A domain assigned once in the block structure

represents an external boundary of the composite block structure. Domains of this type normally

correspond to block surface regions on which BC's would be set, such as solid surfaces, planes of

symmetry, farfield conditions, etc. The user may set these BC's by picking the domain from the

screen and the BC type from a flow solver-specific menu similar to GRIDBLOCK Version 6.

Finally, domains assigned twice in the structure represent interblock connections. Since such

domains exist in two places, the GRIDBLOCK Version 8 will automatically be able to determine all

regions of point to point connections in the multiple block structure. This is a significant

improvement over GRIDBLOCK Version 6, which as described above forced manual establishment

of all connections. Hence, this new capability will eliminate both the time needed to set connections

and the error associated with it. The instances where doubly defined domains in a blocking

arrangement are not intended to define a flow-through condition (such as a flowfield obstruction

with zero thickness) are easily handled by setting a BC on each occurrence of the domain, thereby

circumventing the need for GRIDBLOCK to find a connection at that domain.

Automation Tools

Introduction of the domain entity and edge point distribution in GRIDBLOCK Version 8 also

has a beneficial side effect that falls into the category of automation. Since domains (essentially

subfaces) have been defined in terms of four edges, and since grid points have been distributed on

the connectors that make up the edges it will be possible for GRIDGEN2D Version 8 to

automatically initialize surface grid points within each domain using algebraic techniques. This is

true even in cases where the connectors have been defined in terms of the database and the domain

is intended to maintain the database shape since the parametric coordinates are now stored with

the connector. Hence, the role of GRIDGEN2D Version 8 will be one of a surface grid refinement

tool rather than a surface grid generation tool.

The changes to GRIDBLOCK Version 8 will also allow a user's Change in the number of points

on a connector to be propagated throughout the entire multiple block structure semi-automatically.

In this utility, the user would select a connector, enter the new dimension, and all affected domains,

faces and blocks would be updated semi-automatically to maintain dimensional consistency. New

grid point distributions would be calculated automatically, and a new surface grid system reflecting

the new blocking dimensions could be initialized in ( RIDGEN2D. In this way, a low-level change to

the blocking system would be enforced on the entire grid in a nearly automatic fashion.

The term "semi-automatically" used above to describe dimensional updating indicates what

might happen in a complicated blocking structure. If a face is defined by a single domain with

single connectors on each of the four edges, it is easy to see how changes in the number of points on

one connector (edge) can be propagated to the opposite face edge. However, Figure 13 depicts a

block face defined by domains numbered 1-6. In this example, if the dimension of connector A is

changed, the connectors on the opposite side of domain 1 (connectors B, C and D) must be
redimensioned such that the sum of their dimensions equals the new dimension of connector A. This

in turn requires a redimensioning of connectors E, J, K, F, G and H. Clearly then, the

redimensioning of a single connector can throw the dimensional consistency of an entire multiple

block system out of balance. Notice that there exists no pre-definable manner in which the

connectors in Figure 13 should be redimensioned to maintain consistency. In GRIDBLOCK
261



Version8 tile userwill be led through the areasof ambiguity, being askedto makedecisionsalong
the way,until the entire block systemis resizedcorrectly.

Connector A

B 2

c 3

D 4

E 5

• G

J

K
• 6

H
F

Figure 13: An example of an ambiguity in redimensioning a connector.

User Customization of GRIDGEN2D

Two tools were added to GRIDGEN2D to decrease the amount of user input required to

generate surface grids: a verbosity setting and preferencing.

Verbosity setting refers to the ability to decrease the number of text prompts and menu options

that the user of GRIDGEN2D Version 6 currently has to deal with. By reducing this, novice users

will find GRIDGEN2D Version 8 easier to use because they won't be inundated with queries for

lesser used options that may obscure the grid generation tasks. Also, experienced users will be able

to quickly move through certain commands with fewer keystrokes. The verbosity setting may be

either normal or terse. GRIDGEN2D with normal verbosity is tile default setting, and it appears to

the user as it always has. In terse mode, GI{IDGEN2D hides certain menu buttons from the user

(e.g., the button for Chat,ge Spline Fit f,'om tile edge shape definition menu) and eliminates seldom

used options from text prompts. An exanlple of the latter is the Algebraic Solver main menu

command which is shown here in normal verbosity:

262

Interpolate Method

x,y,z(i,j)

x,y,z(u,v)

u,v(i,j)

x,y,z(u,v)

1. arclength based (Soni) TFI (default)

2. linear (original) TFI

3. polar coordinate TFI

4. TFI with boundary orthogonality

5. TFI stretching along i = const, lines

6. TFI stretching along j = const, lines

7. TANH stretching along i = const, lines

8. TANH stretching along j = const, lines

9. fit grid to parametric surface shape

10. interp, u,v and fit to par. surface



Select interpolation scheme 1-9. (default = i)

and here in terse verbosity:

Interpolate Method

x,y,z(i,j) 1. arclength based (Soni) TFI (default)

3. polar coordinate TFI

Select interpolation scheme 1,3. (default = 1)

Preferencing refers to the ability of an experienced GRIDGEN user to specify ahead of time the

types of certain grid generation options to be used such that the related text prompts or menu

buttons don't appear when the code is run. For example, it is possible to set arclength based TFI as

a preference such that when the Algebraic Solver main menu command is invoked, no prompts for

the specific method appear (as shown above) and arclength based TFI is run automatically.

Preferences may be set for various edge generation options (edge shape, distribution function, etc.),

algebraic solver (method type), and elliptic PDE solver (control function, relaxation factor, etc.).

Using both terse verbosity and preferencing, it is now possible to start the elliptic PDE solver

running simply by invoking the main menu command, rather than having to answer the dozen text

prompts displayed by Version 6. It is also possible to have grid points distributed on an edge in the

same automated fashion.

The verbosity setting, preferencing and several other customizable features can be set in any of

three ways: interactively, through the new Customization main menu command; through

environment variables at runtime; or through a run commands file called .ggrc that contains a

namelist of the various options.

IMPROVED GEOMETRIC INTERFACING

It is well understood in the CFD community that the transition from geometric definition of a

configuration (on a CAD system) to a computational grid is one of the major hurdles in the overall

CFD process [2]. Two approaches for smoothing this transition immediately come to mind. On one

hand, grid generation methods could be added as modules to existing CAD packages [4]. On the

other hand, CAD-like functionality could be added to existing grid generation software. An

advantage to the latter approach is that grid generation users wouldn't have to learn to operate the

CAD system, which, as technology stands today, is much more complex than the grid generator.

This latter approach is the one adopted for the GRIDGEN system.

GRIDGEN Version 6 required geometry models ordered in a discrete point array form, so that a

connected rendering of the model (database, in GRIDGEN terminology) would appear as a

wireframe model. A GRIDGEN database for an F-15 SMTD aircraft is displayed in Figure 14.

263



Figure 14: A discretedatabasefor the F-15fighter.

Unfortunately, a numberof limitations are inherent in a discretedatabase.First, a discrete
approximation to a mathematically continuousmodel is often a poor representationof the
geometry,particularly whenthe databaseis either sparselydiscretizedor if the model hasregionsof
large surfacecurvature. GRIDGEN placesgrid points on the facetedmodelof a continuous
geometry.Secondly,a discretedatabaseis not readily output by standard CAD systems,sincemost
usea mathematical surfaceform moresophisticatedthan simplepoint data. This often forced the
CAD operator to generatea databaseby piecingtogether a collectionof discretizedcrosssectional
cuts, a tediousand error-proneprocess.

GRIDGEN Version8 will support entities written in the PATRAN Neutral File format.
PATRAN [10] is a generalengineeringsoftwaresystemoriginally designedfor solid mechanics
applications,and the neutral file is a format intendedfor accessby other computer hardwareand
software. The entities to be supported in this format arecubic curvesfor edgeshapedefinition, and
bi-cubic patchesand trimmed surfacemodelsfor surfaceshapedefinition.

GRIDGEN Version8 will alsosupport entities written in the Initial GraphicsExchange
Specification[11](IGES) format supportedby the National Institute of Standardsand Technology
(formerly the National Bureauof Standards). This format, supportedby most CAD packages,will
providea direct link betweenthe CAD softwareand the GRIDGEN codes.SevenIGES entity types
are immediately usefulin GRIDGEN, including the parametric curvesand surfaces,the rational
B-splinecurvesand surfaces,and trimmed surfaceentities. Implementation of the rational B-spline
entities will be donethrough extensiveuseof the DT_NURBSlibrary [12], a library of Fortran
subroutine B-splineutilities developedfor the Navy's David Taylor ResearchCenter.

Implementation of the improvedgeometricinterface will begin with GRIDBLOCK and
GRIDGEN2D extensionsto read and interpret surfaceand curvegeometriesin either IGES or
PATRAN formats. From there severalnew connectorsegmentshapeswill be added to
GRIDBLOCK, including a free curvesegmentbasedon B-splines,a conic sectionsegmentbasedon
rational B-splines (which will complementthe currentellipse segment),and surface-constrained

264



curve segments allowing general curves to be drawn directly on the IGES and/or PATRAN surfaces.

In addition, an interface will be developed which uses the DT_NURBS library for calculating

intersection curves on two NURBS surfaces.

The two main surface grid generation algorithms in GRIDGEN2D will also require modification

to accept the IGES and PATRAN formats. In the conventional surface solver, only two of the three

Cartesian coordinates of surface grid points are calculated via a surface form of Poisson's equation,

and the third is calculated by interpolating from the geometric surface. If the defining surface is in

IGES or PATRAN form (rather than the GRIDGEN database format), ray tracing routines from

the DT_NURBS library will be accessed to interpolate the third physical coordinate from the

surface. In the parametric surface solver, surface grid points are calculated as a solution to

Poisson's equation transformed into the surface's intrinsic (parametric) coordinates. The resulting

parametric coordinate solution is then transformed back to physical coordinates via the geometry

data. Hence, GRIDGEN2D's parametric solvers will be upgraded to read both IGES and PATRAN

data as the parametric surface representation.

ALGORITHMIC IMPROVEMENTS

This section describes enhancements to the volume grid generatiou software, GI{ll)GEN3D, that

are primarily designed to improve the quality of the resniting grid.

Control Functions

GRIDGEN3D is a batch code that takes as input the surface grids generated by GRIDGEN2D

(see Figure 1) and creates the grid on the interior of each block in the system using algebraic and

PDE methods. Determining the quality of the resulting grid is a nebulous task at best. However,

the attributes of smoothness, clustering, and orthogonality are qualitative measures that are often

cited as desirable. In GRIDGEN3D, these qualities are obtained by the PDE methods through the

use of several control function formulations as shown in Figure 15 [13],[14]. The reader is referred to

Reference [9] for a more detailed explanation of this material. It is unfortunate, however, that each

of these control functions concentrates on a single quality measure. A new control function type was

developed for use in GRIDGEN3D that is a hybrid of the types described above. This hybrid
control function is also available in GRIDGEN2D.

The concept of the hybrid control functions involves applying two control functions

simultaneously. One, the background control function, tends to affect the grid near the block

interior. The other, the foreground control function, tends to affect the grid near the block surfaces.

As applied in GRIDGEN3D, the background control function may be either LaPlace, Thomas &

Middlecoff, or Fixed Grid (see Figure 15). The foreground control function is always Sorenson.

By way of example, consider the Thomas & Middlecoff background control functions. The goal

of these control functions is to cluster grid points on the interior of the block based on the clustering

on the six faces. They are derived based on the assumption that grid lines transverse to a face are

locally straight and intersect the face orthogonally. The calculation p,'oceeds by computing control

function components on each face as follows:

265



controlfunction effect on grid

LaPlace smooth variation of cell volume, tend-

ing toward evenly distributed points,
throughout the interior

Thomas & Middlecoff clustering on block interior is based on
clustering on faces

Fixed Grid kinks in the original grid are removed
Sorenson orthogonality of grid lines with faces,

tight clustering at faces, LaPlace effect on
interior

Figure 15: Effect of control functions on the volume grid.

(I)b onj=l j=J, k=l k=K (1)
"e •ee ' '

qsb- r_, .r",_, on k= 1, k= K, i= 1 i=I (2)
,'5,-

fib-- on i= 1, i=I, j = 1, j =J (3)

Two-dimensional TFI is then used to interpolate (1)bonto each i constant plane, _b onto each j

constant plane, and _'_b oIltO each k constant plane. By themselves, the Thomas & Middlecoff

control fimctions are very robust and result in good grids. A plane from a volume grid computed

using Thomas & Middlecoff control functions is shown in Figure 17b. Note, however, that the

assumption of orthogonality at the faces used in the derivation, does not result in practice.

On the other hand, Sorenson control functions (used in the foreground) are computed to enforce

a specific clustering and tra,lsverse angle at each face. Given any grid, one can compute the control

functions at each point based on the COml)utational derivatives of the Cartesian coordinates.

Sorenson's method uses this relationship to compute the control functions on each of the six faces

but only after the computational derivatives transverse to the face have been altered to enforce

orthogonality and clustering. Consider computation of (P: on the (" = (_min face. At each point on

the face one can coml)ute the derivatives 7e, gee, 7_, _'_,, and Yen using finite differences and the

known grid point coordinates on the face. The derivative transverse to the face _'_ is not known.

Once it is, howew.'r, it will I)e possibh' to compute 7_ (from _ and the transient volume grid) and

_ and 7_ (by differencing 7_). The l)rol)lem is then reduced to determining appropriate values for

7_ to enforce orthogonality.

7_ is comlmted at each poinl on the face 1)ased on user-specified angle and spacing constraints,

which in turn are calculated from the known angle and spacing data on the four edges of the face.

Referring to Figure 16, the grid point's coordinates on adjacent faces allow us to compute the

arclength spacing As, and the two intersection angles 0 and 6 on four edges using

266

(4)



cose -
I +11 +1 (5)

cos6 -
le+l le.l (6)

\

Figure 16: Computation of angle and spacing constraints for the Sorenson control functions.

These constraints are then interpolated from the four edges onto the interior of the face using

TFI. The spacing As is interpolated using computational based LaGrange blending functions and

the angles 0 and + are interpolated using computational based exponential blending functions that

blend the edge angles to _ on the face interior. Then, the angle and spacing constraints are used to

compute C+ on the face interior followed by computing +f on the face.

In the standard Sorenson scheme, the control functions are computed on each of the six faces

and then interpolated onto the block interior using TFI with computational based exponential

blending functions that decay the control functions to zero on the block interior. An example of this

method is shown in Figure 17c. One can see that the grid is indeed clustered and orthogonal to the

faces yet points in the interior are smoothly distributed, where the governing PDE is locally reduced

from Poisson's to LaPlace's equation.

The best features of the Sorenson and Thomas and Middlecoff control functions are maintained

with the hybrid control functions calculated as follows. The background control functions Cb, @b,

and fib are computed throughout the entire block and the foreground control functions _f, @f, and

f_/are computed on only the six block faces. First, the difference of background and foreground

control functions are formed on the six faces as

qJa = qQ - @b

f_d = f_1-ftb

(7)

267



Next, the control function differences are distributed from the faces to the block interior using

TFI with exponentially decaying blending functions such that the differences vanish far into the

block interior. Finally, hybrid control functions are computed by adding the background functions

to the difference functions. The resulting functions will then have • --* _i near the block faces, and

_ _b near the block interior, with equivalent relations for the @ and 9t control functions. Thus,

the hybrid control functions locally assume the form of the background or foreground control

functions in the regions where the particular control functions are best suited.

1_ = fla+fib

(8)

An example of the hybrid combination of Thomas & Middlecoff and Sorenson control functions

is shown in Figure 17d. One can see that not only are the angle and spacing constraints enforced at

the faces but the grid clustering is carried through the block interior.

Numerical Method

Solution of Poisson's Equation in GRIDGEN3D is performed using an explicit, pointwise SOR

algorithm. The robustness and efficiency of this algorithm was improved by the addition of the

following features. I

.

,

,

Variable sweep direction. Each iteration begins the SOR sweep through the i,j,k indices in a

different corner of the block to prevent biasing of the grid in any one computational direction.

One sided differencing. Forward or backward differencing of the coordinate derivatives based

on the sign of the control function improves numerical stability by making the system of

equations more diagonally dominant.

Grid sequencing. In grid sequencing, the PDEs are first solved on a coarse grid consisting of a

sparse subset of the full grid. The solution on the coarse grid converges more rapidly in the

PDE solver. At some point the coarse grid solution is stopped and the grid point coordinates

and control functions on the full grid are interpolated from the coarse grid and the PDE

solution proceeds on the full grid. The net computer time required to converge the grid is

drastically reduced.

CONCLUSION

The improvements discussed in this paper are expected to move the GRIDGEN system to a new

level of user efficiency and geometric and computational accuracy. Initial release of the new

_These three features are also available in GRIDGEN2D.

268



(a)

(b) (c) (d)

Figure 17: For a plane from a 3D grid (a) three control function formulations are compared: Thomas

& Middlecoff (b), Sorenson (c), and hybrid Thomas & Middlecoff and Sorenson (d).

269



software, which will remain in government contractor domain, is anticipated near mid-year 1992.

Long-term plans for GRIDGEN beyond this date include further consolidation of the four

component codes, increased grid automation and rework elimination through the new geometry

hierarchical structure, further development of CAD system functionality, development and

incorporation of improved grid quality procedures such as grid adaption, and expansion of the

GRIDGEN umbrella to unstructured grid techniques.

ACKNOWLEDGEMENT

GRIDGEN upgrades are being performed under subcontract to the Computer Sciences

Corporation, and under contract to the Air Force Wright Laboratory at Eglin Air Force Base. The

authors would like to acknowledge Dr. Robert Smith of NASA Langley Research Center and Mr.

Robert Ames of David Taylor Research Center and their respective agencies for initiating and

sponsoring these efforts. The authors also acknowledge Dr. Donald Kinsey of the Air Force Wright

Laboratories at Wright Patterson AFB for sponsoring GRIDGEN's initial development.

IRIS is a trademark of Silicon Graphics, Inc. IBM and RS/6000 are trademarks of International

Business Machines Corp. Cray and X/MP are trademarks of Cray Research, Inc.

REFERENCES

1. Steger, J.L.: Technical Evaluation Report on the Fluid Dynamics Panel Specialists' Meeting on

Application of Mesh Generation to Complex 3-D Configurations. ed. by Schmidt, W.,

AGARD-AR-268, AGARD, France, March 1991.

2. Smith, R.; Choo, Y.; Van Dalsem, W.; and Bircklebaw, L.: Directions for Surface Modeling/Grid

Generation in NASA. 1991 NASA CFD Conference, NASA Ames Research Center, Mar. 1991.

3. Thompson, J.F; et al.: 'Program EAGLE Numerical Grid Generation System Users Manual."

AFATL-TR-87-15, Vols. I-lII, Air Force Armament Laboratory, March 1987.

4. Seibert, W.: "A Graphic-lterative Program-System to Generate Composite Grids for General

Configurations." Numerical Grid Generation in Computational Fluid Mechanics '88, edited by

S. Sengupta et al., Pineridge Press Ltd., Swansea, U.K., 1988.

5. Amdahl, D.J.: "Interactive Multi-Block Grid Generation." Numerical Grid Generation in

Computational Fluid Mechanics '88, ed. by S. Sengupta et al., Pineridge Press Ltd., Swansea,

U.K., 1988.

6. Abolhassani, J.; Sadrehaghighi, I.; Slnith, R.E.; and Tiwari, S.N.: "Application of Lagrangian

Blending Functions for Grid Generation Around Airplane Geometries." Journal of Aircraft, Vol.

27, No. 10, October, 1990, pp. 873-877.

7. Raj, P.; et al.: "Three-Dimensional Euler Aerodynamic Method (TEAM)."

AFWAL-TR-87-3074, Vols. I-III, Flight Dynamics Laboratory, Wright Research and

Development Center, 1987.

270



8. Cooper, G.K.; and Sirbaugh, J.R.: "PARC Code: Theory and Usage." AEDC-TR-89-15, Arnold

Engineering Development Center, Arnold Air Force Base, 1989.

9. Steinbrenner, J.P.; Chawner J.R.; and Fouts, C.L.: "The GRIDGEN 3D, Multiple Block Grid

Generation System." WRDC-TR-90-3022, Vols. I and II, Wright Patterson Air Force Base, 1990.

10. PATRAN Plus User Manual. PDA Engineering, July, 1987.

11. Smith, B.; et. al.: Initial Graphics Exchange Specification (IGES) Version _.0. U.S. Department

of Commerce NBSIR 88-3813, June 1988.

12. David Taylor Research Center Spline Geometry Library DT_NURBS Users Manual. Boeing

Computer Services, February, 1990.

13. Thomas, P.D.; and Middlecoff, J.F.: "Direct Control of the Grid Point Distribution in Meshes

Generated by Elliptic Equations." AIAA Journal, Vol. 18, 1979, pp. 652-656.

14. Sorenson, R.L.: "The 3DGRAPE Book: Theory, Users Manual, Examples." NASA TM-102224,

NASA Ames Research Center, July, 1989.

271




