10 research outputs found

    Leukocyte and serum S100A8/S100A9 expression reflects disease activity in ANCA-associated vasculitis and glomerulonephritis.

    Get PDF
    Antineutrophil cytoplasm antibody (ANCA)-associated vasculitis (AAV) commonly results in glomerulonephritis, in which neutrophils and monocytes have important roles. The heterodimer calprotectin (S100A8/S100A9, mrp8/14) is a Toll-like receptor-4 ligand found in neutrophils and monocytes and is elevated in inflammatory conditions. By immunohistochemistry of renal biopsies, patients with focal or crescentic glomerular lesions were found to have the highest expression of calprotectin and those with sclerotic the least. Serum levels of calprotectin as measured by ELISA were elevated in patients with active AAV and the levels decreased but did not normalize during remission, suggesting subclinical inflammation. Calprotectin levels in patients with limited systemic disease increased following treatment withdrawal and were significantly elevated in patients who relapsed compared with those who did not. As assessed by flow cytometry, patients with AAV had higher monocyte and neutrophil cell surface calprotectin expression than healthy controls, but this was not associated with augmented mRNA expression in CD14(+) monocytes or CD16(+) neutrophils. Thus, serum calprotectin is a potential disease biomarker in patients with AAV, and may have a role in disease pathogenesis

    Reduced CD27-IgD- B cells in blood and raised CD27-IgD- B cells in gut-associated lymphoid tissue in inflammatory bowel disease.

    Get PDF
    The intestinal mucosa in inflammatory bowel disease (IBD) contains increased frequencies of lymphocytes and a disproportionate increase in plasma cells secreting immunoglobulin (Ig)G relative to other isotypes compared to healthy controls. Despite consistent evidence of B lineage cells in the mucosa in IBD, little is known of B cell recruitment to the gut in IBD. Here we analyzed B cells in blood of patients with Crohn's disease (CD) and ulcerative colitis (UC) with a range of disease activities. We analyzed the frequencies of known B cell subsets in blood and observed a consistent reduction in the proportion of CD27−IgD− B cells expressing all Ig isotypes in the blood in IBD (independent of severity of disease and treatment) compared to healthy controls. Successful treatment of patients with biologic therapies did not change the profile of B cell subsets in blood. By mass cytometry we demonstrated that CD27−IgD− B cells were proportionately enriched in the gut-associated lymphoid tissue (GALT) in IBD. Since production of TNFα is a feature of IBD relevant to therapies, we sought to determine whether B cells in GALT or the CD27−IgD− subset in particular could contribute to pathology by secretion of TNFα or IL-10. We found that donor matched GALT and blood B cells are capable of producing TNFα as well as IL-10, but we saw no evidence that CD27−IgD− B cells from blood expressed more TNFα compared to other subsets. The reduced proportion of CD27−IgD− B cells in blood and the increased proportion in the gut implies that CD27−IgD− B cells are recruited from the blood to the gut in IBD. CD27−IgD− B cells have been implicated in immune responses to intestinal bacteria and recruitment to GALT, and may contribute to the intestinal inflammatory milieu in IBD

    B-cell numbers and phenotype at clinical relapse following rituximab therapy differ in SLE patients according to anti-dsDNA antibody levels

    Get PDF
    Objectives. To correlate the kinetics of B-cell repopulation with relapse after B-cell depletion therapy in SLE patients and address whether variation in relapse rate, B-cell numbers and phenotype are related to anti-dsDNA antibody levels

    B cell resistance to Fas-mediated apoptosis contributes to their ineffective control by regulatory T cells in rheumatoid arthritis

    No full text
    ObjectiveTo investigate whether regulatory T cells (Treg) can control B cell function in rheumatoid arthritis (RA) and if not to explore the basis for this defect.MethodsSuppression of B cell responses by Treg was analysed in vitro by flow cytometry and ELISA using peripheral blood mononuclear cells from 65 patients with RA and 41 sex-matched and aged-matched healthy volunteers. Blocking and agonistic antibodies were used to define the role of Fas-mediated apoptosis in B cell regulation.ResultsTreg failed to restrain B cell activation, proinflammatory cytokine and antibody production in the presence of responder T cells in RA patients. This lack of suppression was not only caused by impaired Treg function but was also due to B cell resistance to regulation. In healthy donors, control by Treg was associated with increased B cell death and relied upon Fas-mediated apoptosis. In contrast, RA B cells had reduced Fas expression compared with their healthy counterparts and were resistant to Fas-mediated apoptosis.ConclusionsThese studies demonstrate that Treg are unable to limit B cell responses in RA. This appears to be primarily due to B cell resistance to suppression, but Treg defects also contribute to this failure of regulation. Our data identify the Fas pathway as a novel target for Treg-mediated suppression of B cells and highlight a potential therapeutic approach to restore control of B cells by Treg in RA patients.</jats:sec

    Mannose receptor interacts with Fc receptors and is critical for the development of crescentic glomerulonephritis in mice

    Get PDF
    Crescentic glomerulonephritis (CGN), which frequently results in acute and chronic kidney disease, is characterized by and dependent on glomerular infiltration by macrophages. The mannose receptor (MR) is a pattern recognition receptor implicated in the uptake of endogenous and microbial ligands by macrophages, mesangial cells (MCs), and selected endothelial cells. It is upregulated on alternatively activated macrophages (i.e., macrophages associated with tissue repair and humoral immunity) and involved in antigen presentation to T cells. We used the mouse model of nephrotoxic nephritis to investigate the role of MR in CGN. Our results demonstrate what we believe to be a novel role for MR in the promotion of CGN that is independent of adaptive immune responses. MR-deficient (Mr–/–) mice were protected from CGN despite generating humoral and T cell responses similar to those of WT mice, but they demonstrated diminished macrophage and MC Fc receptor–mediated (FcR-mediated) functions, including phagocytosis and Fc-mediated oxygen burst activity. Mr–/– MCs demonstrated augmented apoptosis compared with WT cells, and this was associated with diminished Akt phosphorylation. Macrophage interaction with apoptotic MCs induced a noninflammatory phenotype that was more marked in Mr–/– macrophages than in WT macrophages. Our results demonstrate that MR augments Fc-mediated function and promotes MC survival. We suggest that targeting MR may provide an alternative therapeutic approach in CGN while minimizing the impact on adaptive immune responses, which are affected by conventional immunosuppressive approaches

    Two-Year Outcomes of Valoctocogene Roxaparvovec Therapy for Hemophilia A.

    No full text
    BACKGROUND: Valoctocogene roxaparvovec delivers a B-domain-deleted factor VIII coding sequence with an adeno-associated virus vector to prevent bleeding in persons with severe hemophilia A. The findings of a phase 3 study of the efficacy and safety of valoctocogene roxaparvovec therapy evaluated after 52 weeks in men with severe hemophilia A have been published previously. METHODS: We conducted an open-label, single-group, multicenter, phase 3 trial in which 134 men with severe hemophilia A who were receiving factor VIII prophylaxis received a single infusion of 6×1013 vector genomes of valoctocogene roxaparvovec per kilogram of body weight. The primary end point was the change from baseline in the annualized rate of treated bleeding events at week 104 after receipt of the infusion. The pharmacokinetics of valoctocogene roxaparvovec were modeled to estimate the bleeding risk relative to the activity of transgene-derived factor VIII. RESULTS: At week 104, a total of 132 participants, including 112 with data that were prospectively collected at baseline, remained in the study. The mean annualized treated bleeding rate decreased by 84.5% from baseline (P<0.001) among the participants. From week 76 onward, the trajectory of the transgene-derived factor VIII activity showed first-order elimination kinetics; the model-estimated typical half-life of the transgene-derived factor VIII production system was 123 weeks (95% confidence interval, 84 to 232). The risk of joint bleeding was estimated among the trial participants; at a transgene-derived factor VIII level of 5 IU per deciliter measured with chromogenic assay, we expected that participants would have 1.0 episode of joint bleeding per year. At 2 years postinfusion, no new safety signals had emerged and no new serious adverse events related to treatment had occurred. CONCLUSIONS: The study data show the durability of factor VIII activity and bleeding reduction and the safety profile of valoctocogene roxaparvovec at least 2 years after the gene transfer. Models of the risk of joint bleeding suggest that the relationship between transgene-derived factor VIII activity and bleeding episodes is similar to that reported with the use of epidemiologic data for persons with mild-to-moderate hemophilia A. (Funded by BioMarin Pharmaceutical; GENEr8-1 ClinicalTrials.gov number, NCT03370913.)
    corecore