366 research outputs found

    Contemporary empyema thoracis necessitans in an adult male caused by Staphylococcus aureus: decortication is superior to traditional under water seal intercostal tube in chronic empyema

    Get PDF
    Empyema thoracis necessitans is a rare clinical finding nowadays. We report 55 years old Saudi male with past history of road traffic accident, poly trauma, chest surgery and paraplegia admitted for rehabilitation in Sultan Bin Abduaziz Humanitarian City (SBAHC), Riyadh, Saudi Arabia and diagnosed with  empyema thoracis necessitans due to Staphylococcus aureus, treated initially with traditional thoracostomy under water seal intercostal intubation and antibiotics but subsequently required decortication

    A secure and lightweight drones-access protocol for smart city surveillance

    Get PDF
    The rising popularity of ICT and the Internet has enabled Unmanned Aerial Vehicle (UAV) to offer advantageous assistance to Vehicular Ad-hoc Network (VANET), realizing a relay node's role among the disconnected segments in the road. In this scenario, the communication is done between Vehicles to UAVs (V2U), subsequently transforming into a UAV-assisted VANET. UAV-assisted VANET allows users to access real-time data, especially the monitoring data in smart cities using current mobile networks. Nevertheless, due to the open nature of communication infrastructure, the high mobility of vehicles along with the security and privacy constraints are the significant concerns of UAV-assisted VANET. In these scenarios, Deep Learning Algorithms (DLA) could play an effective role in the security, privacy, and routing issues of UAV-assisted VANET. Keeping this in mind, we have devised a DLA-based key-exchange protocol for UAV-assisted VANET. The proposed protocol extends the scalability and uses secure bitwise XOR operations, one-way hash functions, including user's biometric verification when users and drones are mutually authenticated. The proposed protocol can resist many well-known security attacks and provides formal and informal security under the Random Oracle Model (ROM). The security comparison shows that the proposed protocol outperforms the security performance in terms of running time cost and communication cost and has effective security features compared to other related protocols

    Quantifying the efficiency of hydroxyapatite mineralising peptides

    Get PDF
    We present a non-destructive analytical calibration tool to allow quantitative assessment of individual calcium phosphates such as hydroxyapatite (HAP) from mixtures including brushite. Many experimental approaches are used to evaluate the mineralising capabilities of biomolecules including peptides. However, it is difficult to quantitatively compare the efficacy of peptides in the promotion of mineralisation when inseparable mixtures of different minerals are produced. To address this challenge, a series of hydroxyapatite and brushite mixtures were produced as a percent/weight (0–100%) from pure components and multiple (N=10) XRD patterns were collected for each mixture. A linear relationship between the ratio of selected peak heights and the molar ratio was found. Using this method, the mineralising capabilities of three known hydroxyapatite binding peptides, CaP(S) STLPIPHEFSRE, CaP(V) VTKHLNQISQSY and CaP(H) SVSVGMKPSPRP, was compared. All three directed mineralisation towards hydroxyapatite in a peptide concentration dependent manner. CaP(V) was most effective at inducing hydroxyapatite formation at higher reagent levels (Ca2+ = 200mM), as also seen with peptide-silk chimeric materials, whereas CaP(S) was most effective when lower concentrations of calcium (20mM) and phosphate were used. The approach can be extended to investigate HAP mineralisation in the presence of any number of mineralisation promoters or inhibitors

    An In Situ Autologous Tumor Vaccination with Combined Radiation Therapy and TLR9 Agonist Therapy

    Get PDF
    PURPOSE:Recent studies have shown that a new generation of synthetic agonist of Toll-like receptor (TLR) 9 consisting a 3'-3'-attached structure and a dCp7-deaza-dG dinucultodie shows more potent immunostimulatory effects in both mouse and human than conventional CpG oligonucleotides. Radiation therapy (RT) provides a source of tumor antigens that are released from dying, irradiated, tumor cells without causing systemic immunosuppression. We, therefore, examined effect of combining RT with a designer synthetic agonist of TLR9 on anti-tumoral immunity, primary tumor growth retardation and metastases in a murine model of lung cancer. METHODS:Grouped C57BL/6 and congenic B cell deficient mice (B(-/-)) bearing footpad 3LL tumors were treated with PBS, TLR9 agonist, control oligonucelotide, RT or the combination of RT and TLR9 agonist. Immune phenotype of splenocytes and serum IFN-γ and IL-10 levels were analyzed by FACS and ELISA, 24 h after treatment. Tumor growth, lung metastases and survival rate were monitored and tumor specific antibodies in serum and deposition in tumor tissue were measured by ELISA and immunofluorescence. RESULTS:TLR9 agonist expanded and activated B cells and plasmacytoid dendritic cells in wild-type mice and natural killer DCs (NKDCs) in B cell-deficient (B(-/-)) mice bearing ectopic Lewis lung adenocarcinoma (3LL). Combined RT with TLR9 agonist treatment inhibited 3LL tumor growth in both wild type and B(-/-) mice. A strong tumor-specific humoral immune response (titer: 1/3200) with deposition of mouse IgG auto-antibodies in tumor tissue were found in wildtype mice, whereas the number of tumor infiltrating NKDCs increased in B(-/-) mice following RT+ TLR9 agonist therapy. Furthermore, mice receiving combination therapy had fewer lung metastases and a higher survival than single treatment cohorts. CONCLUSIONS:Combination therapy with TLR9 agonist and RT induces systemic anti-tumoral humoral response, augments tumoral infiltration of NKDCs, reduces pulmonary metastases and improves survival in a murine model of 3LL cancer

    The HIV-1 Nef protein binds argonaute-2 and functions as a viral suppressor of RNA interference

    Get PDF
    The HIV-1 accessory protein Nef is an important virulence factor. It associates with cellular membranes and modulates the endocytic machinery and signaling pathways. Nef also increases the proliferation of multivesicular bodies (MVBs), which are sites for virus assembly and budding in macrophages. The RNA interference (RNAi) pathway proteins Ago2 and GW182 localize to MVBs, suggesting these to be sites for assembly and turnover of the miRNA-induced silencing complex (miRISC). While RNAi affects HIV replication, it is not clear if the virus encodes a suppressor activity to overcome this innate host response. Here we show that Nef colocalizes with MVBs and binds Ago2 through two highly conserved Glycine-Tryptophan (GW) motifs, mutations in which abolish Nef binding to Ago2 and reduce virus yield and infectivity. Nef also inhibits the slicing activity of Ago2 and disturbs the sorting of GW182 into exosomes resulting in the suppression of miRNA-induced silencing. Thus, besides its other activities, the HIV-1 Nef protein is also proposed to function as a viral suppressor of RNAi (VSR)

    Upregulated IL-1β in dysferlin-deficient muscle attenuates regeneration by blunting the response to pro-inflammatory macrophages.

    Get PDF
    BACKGROUND: Loss-of-function mutations in the dysferlin gene (DYSF) result in a family of muscle disorders known collectively as the dysferlinopathies. Dysferlin-deficient muscle is characterized by inflammatory foci and macrophage infiltration with subsequent decline in muscle function. Whereas macrophages function to remove necrotic tissue in acute injury, their prevalence in chronic myopathy is thought to inhibit resolution of muscle regeneration. Two major classes of macrophages, classical (M1) and alternative (M2a), play distinct roles during the acute injury process. However, their individual roles in chronic myopathy remain unclear and were explored in this study. METHODS: To test the roles of the two macrophage phenotypes on regeneration in dysferlin-deficient muscle, we developed an in vitro co-culture model of macrophages and muscle cells. We assayed the co-cultures using ELISA and cytokine arrays to identify secreted factors and performed transcriptome analysis of molecular networks induced in the myoblasts. RESULTS: Dysferlin-deficient muscle contained an excess of M1 macrophage markers, compared with WT, and regenerated poorly in response to toxin injury. Co-culturing macrophages with muscle cells showed that M1 macrophages inhibit muscle regeneration whereas M2a macrophages promote it, especially in dysferlin-deficient muscle cells. Examination of soluble factors released in the co-cultures and transcriptome analysis implicated two soluble factors in mediating the effects: IL-1β and IL-4, which during acute injury are secreted from M1 and M2a macrophages, respectively. To test the roles of these two factors in dysferlin-deficient muscle, myoblasts were treated with IL-4, which improved muscle differentiation, or IL-1β, which inhibited it. Importantly, blockade of IL-1β signaling significantly improved differentiation of dysferlin-deficient cells. CONCLUSIONS: We propose that the inhibitory effects of M1 macrophages on myogenesis are mediated by IL-1β signals and suppression of the M1-mediated immune response may improve muscle regeneration in dysferlin deficiency. Our studies identify a potential therapeutic approach to promote muscle regeneration in dystrophic muscle

    Perceptions of eye health in schools in Pakistan

    Get PDF
    BACKGROUND: Research exploring children's and their teachers' perceptions of eye health is lacking. This paper reports for the first time on perceptions of primary schoolchildren and their teachers of healthy and diseased eyes, things that keep eyes healthy and damage them, and what actions to be taken in case of an eye injury. METHODS: Using draw and write technique, 160 boys and girls (9–12 years old) attending four primary schools in Abbottabad district, northern Pakistan, were invited to draw pictures in response to a set of semi-structured questions and then label them. Sixteen teachers who were currently teaching the selected students were interviewed one-on-one. RESULTS: Analysis of text accompanying 800 drawings and of the interview scripts revealed that most children and teachers perceived healthy eyes to be those which could see well, and diseased eyes to be those which have redness, watering, dirty discharge, pain, and itching; or those which have "weak eyesight" and blindness. Among things that students and teachers thought damage the eyes included sun, television, and sharp pointed objects, particularly pencils. Teachers noted that children with eye problems "have difficulty seeing the blackboard well", "screw up their eyes", and "hold their books too close". CONCLUSION: We conclude that schoolchildren and their teachers had a good knowledge of eye health, but many of them had serious misconceptions e.g., use of kohl, medicines and eye drops keeps eyes healthy. Kohl is an important source of lead and can reduce children's intelligence even at low blood levels. Health education in schools must take into account children's existing knowledge of and misconceptions about various aspects of eye health. Such steps if taken could improve the relevance of eye health education to schoolchildren
    corecore