20 research outputs found

    Conserved motifs reveal details of ancestry and structure in the small tim chaperones of the mitochondrial intermembrane space

    Get PDF
    The mitochondrial inner and outer membranes are composed of a variety of integral membrane proteins, assembled into the membranes posttranslationally. The small translocase of the inner mitochondrial membranes (TIMs) are a group of ∌10 kDa proteins that function as chaperones to ferry the imported proteins across the mitochondrial intermembrane space to the outer and inner membranes. In yeast, there are 5 small TIM proteins: Tim8, Tim9, Tim10, Tim12, and Tim13, with equivalent proteins reported in humans. Using hidden Markov models, we find that many eukaryotes have proteins equivalent to the Tim8 and Tim13 and the Tim9 and Tim10 subunits. Some eukaryotes provide "snapshots" of evolution, with a single protein showing the features of both Tim8 and Tim13, suggesting that a single progenitor gene has given rise to each of the small TIMs through duplication and modification. We show that no "Tim12" family of proteins exist, but rather that variant forms of the cognate small TIMs have been recently duplicated and modified to provide new functions: the yeast Tim12 is a modified form of Tim10, whereas in humans and some protists variant forms of Tim9, Tim8, and Tim13 are found instead. Sequence motif analysis reveals acidic residues conserved in the Tim10 substrate-binding tentacles, whereas more hydrophobic residues are found in the equivalent substrate-binding region of Tim13. The substrate-binding region of Tim10 and Tim13 represent structurally independent domains: when the acidic domain from Tim10 is attached to Tim13, the Tim8–Tim13Âč⁰ complex becomes essential and the Tim9–Tim10 complex becomes dispensable. The conserved features in the Tim10 and Tim13 subunits provide distinct binding surfaces to accommodate the broad range of substrate proteins delivered to the mitochondrial inner and outer membranes

    Mitochondrial tRNA import in the parasitic protozoon "Trypanosoma brucei" and its consequences on mitochondrial translation

    Get PDF
    Le parasite protozoaire Trypanosoma brucei est l’agent pathogĂšne responsable de la maladie du sommeil chez l’homme. En plus de son importance dans le domaine de la lutte contre les maladies tropicales, T. brucei est Ă©galement un excellent modĂšle pour la recherche fondamentale car il prĂ©sente beaucoup de caractĂ©ristiques qui lui sont propres. Par exemple, aucun ARN de transfert (ARNt) n’est codĂ© dans le gĂ©nome mitochondrial. Pour cette raison, les ARNts nĂ©cessaires au processus de traduction mitochondriale sont codĂ©s dans le noyau, puis importĂ©s depuis le cytosol [1]. Ainsi, mis Ă  part l’initiateur ARNtMet et l’ARNtSec, tous les ARNts du trypanosome fonctionnent Ă  la fois dans le cytosol et dans la mitochondrie. Une consĂ©quence importante de l’import mitochondrial des ARNts rĂ©side dans le fait que les ARNts utilisĂ©s dans la mitochondrie de T. brucei ont une origine Ă©volutionnaire eucaryote. Cependant la mitochondrie provient d’un ancĂȘtre bactĂ©rien. C’est pourquoi nous avons voulu Ă©tudier comment le systĂšme de traduction mitochondriale, qui est de type bactĂ©rien, s’est adaptĂ© aux ARNts de type eucaryote durant l’évolution. Etant donnĂ© que l’initiateur ARNtMet du trypanosome est localisĂ© exclusivement dans le cytosol, le seul ARNtMet prĂ©sent dans la mitochondrie de T. brucei est l’élongateur ARNtMet qui est importĂ© depuis le cytosol. Dans les bactĂ©ries et les organelles, la formylation spĂ©cifique de l’initiateur methionyl-ARNtMet catalisĂ©e par la methionyl- ARNt formyltransferase (MTF) est nĂ©cessaire au processus d’initiation de la traduction. L’initiateur formylmethionyl-ARNtMet rĂ©sultant de cette rĂ©action se lie alors avec le facteur d’initiation 2 de type bactĂ©rien (IF2), ce qui favorise l’intĂ©raction de l’ARNt avec le ribosome. Etonnamment, dans la mitochondrie de T. brucei, une partie de l’élongateur ARNtMet importĂ© est formylĂ©e par un orthologue de MTF dont la taille est spĂ©cialement grande [2]. Durant ce travail de thĂšse, nous avons identifiĂ© IF2 chez T. brucei et dĂ©montrĂ© que cette protĂ©ine est nĂ©cessaire Ă  la croissance normale du parasite. De plus, nous avons montrĂ© qu’IF2 ne reconnaĂźt l’élongateur methionyl-ARNtMet que si ce dernier est formylĂ©. Ainsi, en complĂ©ment de prĂ©cĂ©dentes Ă©tudes [1, 2], ce travail met l’accent sur le double rĂŽle de l’élongateur cytosolique ARNtMet en tant qu’initiateur et Ă©longateur dans un systĂšme de traduction mitochondriale (RĂ©sultats A). Pour ĂȘtre fonctionnel pendant la traduction, chaque ARNt doit ĂȘtre attachĂ© Ă  son acide aminĂ©. Le processus d’attachement, appelĂ© aminoacylation, est catalisĂ© par des aminoacyl-ARNt synthĂ©tases. Etant donnĂ© que chez T. brucei les ARNts cytosoliques et importĂ©s proviennent du mĂȘme ensemble de gĂšnes nuclĂ©aires, on s’attend Ă  ce qu’ils soient aminoacylĂ©s par les mĂȘmes enzymes. Le fait que la plupart des aminoacyl-ARNt synthĂ©tases du trypanosome sont reprĂ©sentĂ©es par des gĂšnes uniques supporte cette hypothĂšse. Cependant, le gĂ©nome du trypanosome contient deux diffĂ©rents gĂšnes codant pour deux tryptophanyl-tRNA synthĂ©tases de type eucaryote. Nous montrons dans ce travail que ces deux enzymes sont essentielles pour une croissance normale. De plus nous dĂ©montrons que la nĂ©cessitĂ© d’une deuxiĂšme tryptophanyl-tRNA synthĂ©tase chez T. brucei est due Ă  l’édition intra-mitochondriale de l’ARNtTrp (tRNA editing) requise pour le rĂ©-assignement du codon UGA en tryptophane (RĂ©sultats B). Dans la partie C des rĂ©sultats, certains composants impliquĂ©s dans l’insertion de la sĂ©rine et de la sĂ©lĂ©nocystĂ©ine dans les protĂ©ines ont Ă©tĂ© caractĂ©risĂ©s. Dans le contexte de l’import mitochondrial des ARNts nous avons montrĂ© que l’ARNtSec est le second ARNt localisĂ© exclusivement dans le cytosol du trypanosome. Dans le but d’examiner le rapport entre l’import mitochondrial des ARNts et des protĂ©ines chez T. brucei, nous avons utilisĂ© la technique de l’ARN interfĂ©rence (RNAi) en vue de rĂ©duire sensiblement l’expression des homologues de Tim17-22 et Tim8-13. Ces protĂ©ines sont connues pour faire partie de l’appareil de translocation des protĂ©ines mitochondriales chez d’autres organismes. Les effets morphologiques causĂ©s par leur ablation sont prĂ©sentĂ©s dans la partie D des rĂ©sultats.The protozoon parasite Trypanosoma brucei is the causing agent of human sleeping sickness. Besides its clinical importance T. brucei is also an excellent model for basic research since it has many unique features. The mitochondrion of T. brucei, for example, lacks tRNA genes. The tRNAs required for mitochondrial translation are therefore encoded in the nucleus and imported from the cytosol [1]. Thus, except for the initiator tRNAMet and tRNASec, all trypanosomal tRNAs function in both the cytosol and the mitochondrion. An important consequence of mitochondrial tRNA import is that the imported tRNAs are of eukaryotic evolutionary origin. The mitochondrion however derives from a bacterial ancestor. Thus, we wanted to investigate how the bacterial-type translation system of the mitochondrion has adapted to eukaryotic-type tRNAs during evolution. Due to the exclusive cytosolic localization of the trypanosomal initiator tRNAMet, the only tRNAMet present in the mitochondrion of T. brucei is the imported eukaryotic elongator tRNAMet. In bacteria and organelles, the translation initiation process requires the specific formylation of the initiator methionyl-tRNAMet by the methionyl-tRNA formyltransferase (MTF). The subsequent binding of the resulting initiator formylmethionyl-tRNAMet to the bacterial-type initiation factor 2 (IF2) promotes the interaction of the tRNA with the ribosome. In the mitochondrion of T. brucei a fraction of the imported elongator methionyl-tRNAMet is unexpectedly formylated by an extraordinary large MTF orthologue [2]. In the present work we identified the trypanosomal IF2 and we demonstrated that it is required for normal growth of the parasite. Furthermore, we showed that it recognizes the formylmethionylated imported elongator tRNAMet, but not its unformylated counterpart. Hence, together with previous studies [1, 2], this work emphasizes the dual use of a cytosolic elongator tRNAMet as initiator and elongator in a mitochondrial translation system (Results A). In order to be used in translation each tRNA needs to be attached to its cognate amino acid. The process of attachment is called aminoacylation and is catalyzed by aminoacyl-tRNA synthetases. Since cytosolic and imported tRNAs of T. brucei derive from the same set of nuclear genes they are expected to be aminoacylated by the same enzymes. In agreement with this hypothesis, most trypanosomal aminoacyl-tRNA synthetases are represented by single genes. Interestingly however, the T. brucei genome contains two different genes for eukaryotic tryptophanyl-tRNA synthetases. We show in this work that both of these enzymes are essential for normal growth. Furthermore we demonstrate that the unexpected use of a second tryptophanyl-tRNA synthetase in T. brucei is caused by a mitochondria-specific editing event of the tRNATrp which is required for the mitochondrial reassignment of the UGA codon to tryptophan (Results B). In the part C of the results section some components involved in the insertion of serine and selenocysteine into trypanosomal proteins were characterized. In the context of the mitochondrial tRNA import it was shown that tRNASec is the second cytosol-specific tRNA in T. brucei. In order to understand the connection between the mitochondrial tRNA import and protein translocation in T. brucei we used the RNA interference (RNAi) strategy to knock down the expression of the Tim17-22 and Tim8-13 homologues. These proteins are known to be components of the mitochondrial protein translocation machinery in other organisms. Morphological effects caused by their depletion are presented in the part D of the results

    Hydroxyl radical-induced photochemical formation of dicarboxylic acids from unsaturated fatty acid (oleic acid) in aqueous solution

    Get PDF
    In this study, we assess under laboratory controlled conditions the direct and hydroxyl radical (OH)-induced photochemical production of low molecular weight (LMW) dicarboxylic acids and related compounds (C2–C9) (DCAs) from oleic acid (cis-9-octadecenoic, Δ9C18) in aqueous solution. Nitrate (NO3−)-amended and unamended oleate solutions were irradiated under ultraviolet-B radiation (UV-B, 313 nm) for 5 h, with NO3− being the source of OH. The OH-induced photochemical production of DCAs (C2di–C9di) (170 ± 26 nM h−1) was much higher than that induced by the direct effect of UV-B (33 ± 22 nM h−1), accounting for approximately 85% of the total (direct + OH-induced) photochemical production of DCAs (C2di–C9di) (198 ± 15 nM h−1). Azelaic acid (C9di) was the dominant photoproduct (comprising 63 and 44% of DCAs in the direct and OH-induced photochemical production, respectively) followed by C8di, C7di and C6di, whereas shorter chain compounds (C2di–C5di) were minor produced species. Using our estimate of OH photoproduction (P-OH in nM h−1), the production of C9di from 50 ÎŒM of oleic acid was evaluated at 45 nM (nM OH)−1

    In vivo study in Trypanosoma brucei links mitochondrial transfer RNA import to mitochondrial protein import

    No full text
    Trypanosoma brucei imports all mitochondrial transfer RNAs (tRNAs) from the cytosol. By using cell lines that allow independent tetracycline-inducible RNA interference and isopropyl-ÎČ-D-thiogalactopyranoside-inducible expression of a tagged tRNA, we show that ablation of Tim17 and mitochondrial heat-shock protein 70, components of the inner-membrane protein translocation machinery, strongly inhibits import of newly synthesized tRNAs. These findings, together with previous results in yeast and plants, suggest that the requirement for mitochondrial protein-import factors might be a conserved feature of mitochondrial tRNA import in all systems

    In vivo

    No full text

    Trypanosoma seryl-tRNA synthetase Is a metazoan-like enzyme with high affinity for tRNA<sup>Sec</sup>

    Get PDF
    Trypanosomatids are important human pathogens that form a basal branch of eukaryotes. Their evolutionary history is still unclear as are many aspects of their molecular biology. Here we characterize essential components required for the incorporation of serine and selenocysteine into the proteome of Trypanosoma. First, the biological function of a putative Trypanosoma seryl-tRNA synthetase was characterized in vivo. Secondly, the molecular recognition by Trypanosoma seryl-tRNA synthetase of its cognate tRNAs was dissected in vitro. The cellular distribution of tRNASec was studied, and the catalytic constants of its aminoacylation were determined. These were found to be markedly different from those reported in other organisms, indicating that this reaction is particularly efficient in trypanosomatids. Our functional data were analyzed in the context of a new phylogenetic analysis of eukaryotic seryl-tRNA synthetases that includes Trypanosoma and Leishmania sequences. Our results show that trypanosomatid seryl-tRNA synthetases are functionally and evolutionarily more closely related to their metazoan homologous enzymes than to other eukaryotic enzymes. This conclusion is supported by sequence synapomorphies that clearly connect metazoan and trypanosomatid seryl-tRNA synthetases
    corecore