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Summary 

 

Summary 
 

The protozoon parasite Trypanosoma brucei is the causing agent of human sleeping 

sickness. Besides its clinical importance T. brucei is also an excellent model for basic 

research since it has many unique features. The mitochondrion of T. brucei, for 

example, lacks tRNA genes. The tRNAs required for mitochondrial translation are 

therefore encoded in the nucleus and imported from the cytosol [1]. Thus, except for 

the initiator tRNAMet and tRNASec, all trypanosomal tRNAs function in both the 

cytosol and the mitochondrion. An important consequence of mitochondrial tRNA 

import is that the imported tRNAs are of eukaryotic evolutionary origin. The 

mitochondrion however derives from a bacterial ancestor. Thus, we wanted to 

investigate how the bacterial-type translation system of the mitochondrion has 

adapted to eukaryotic-type tRNAs during evolution. 

 

Due to the exclusive cytosolic localization of the trypanosomal initiator tRNAMet, the 

only tRNAMet present in the mitochondrion of T. brucei is the imported eukaryotic 

elongator tRNAMet. In bacteria and organelles, the translation initiation process 

requires the specific formylation of the initiator methionyl-tRNAMet by the methionyl-

tRNA formyltransferase (MTF). The subsequent binding of the resulting initiator 

formylmethionyl-tRNAMet to the bacterial-type initiation factor 2 (IF2) promotes the 

interaction of the tRNA with the ribosome. In the mitochondrion of T. brucei a 

fraction of the imported elongator methionyl-tRNAMet is unexpectedly formylated by 

an extraordinary large MTF orthologue [2]. In the present work we identified the 

trypanosomal IF2 and we demonstrated that it is required for normal growth of the 

parasite. Furthermore, we showed that it recognizes the formylmethionylated 

imported elongator tRNAMet, but not its unformylated counterpart. Hence, together 

with previous studies [1, 2], this work emphasizes the dual use of a cytosolic 

elongator tRNAMet as initiator and elongator in a mitochondrial translation system 

(Results A). 

 

In order to be used in translation each tRNA needs to be attached to its cognate amino 

acid. The process of attachment is called aminoacylation and is catalyzed by 
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aminoacyl-tRNA synthetases. Since cytosolic and imported tRNAs of T. brucei derive 

from the same set of nuclear genes they are expected to be aminoacylated by the same 

enzymes. In agreement with this hypothesis, most trypanosomal aminoacyl-tRNA 

synthetases are represented by single genes. Interestingly however, the T. brucei 

genome contains two different genes for eukaryotic tryptophanyl-tRNA synthetases. 

We show in this work that both of these enzymes are essential for normal growth. 

Furthermore we demonstrate that the unexpected use of a second tryptophanyl-tRNA 

synthetase in T. brucei is caused by a mitochondria-specific editing event of the 

tRNATrp which is required for the mitochondrial reassignment of the UGA codon to 

tryptophan (Results B). 

 

In the part C of the results section some components involved in the insertion of 

serine and selenocysteine into trypanosomal proteins were characterized. In the 

context of the mitochondrial tRNA import it was shown that tRNASec is the second 

cytosol-specific tRNA in T. brucei. 

 

In order to understand the connection between the mitochondrial tRNA import and 

protein translocation in T. brucei we used the RNA interference (RNAi) strategy to 

knock down the expression of the Tim17-22 and Tim8-13 homologues. These 

proteins are known to be components of the mitochondrial protein translocation 

machinery in other organisms. Morphological effects caused by their depletion are 

presented in the part D of the results. 
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Résumé 
 

Le parasite protozoaire Trypanosoma brucei est l’agent pathogène responsable de la 

maladie du sommeil chez l’homme. En plus de son importance dans le domaine de la 

lutte contre les maladies tropicales, T. brucei est également un excellent modèle pour 

la recherche fondamentale car il présente beaucoup de caractéristiques qui lui sont 

propres. Par exemple, aucun ARN de transfert (ARNt) n’est codé dans le génome 

mitochondrial. Pour cette raison, les ARNts nécessaires au processus de traduction 

mitochondriale sont codés dans le noyau, puis importés depuis le cytosol [1]. Ainsi, 

mis à part l’initiateur ARNtMet et l’ARNtSec, tous les ARNts du trypanosome 

fonctionnent à la fois dans le cytosol et dans la mitochondrie. Une conséquence 

importante de l’import mitochondrial des ARNts réside dans le fait que les ARNts 

utilisés dans la mitochondrie de T. brucei ont une origine évolutionnaire eucaryote. 

Cependant la mitochondrie provient d’un ancêtre bactérien. C’est pourquoi nous 

avons voulu étudier comment le système de traduction mitochondriale, qui est de type 

bactérien, s’est adapté aux ARNts de type eucaryote durant l’évolution.  

 

Etant donné que l’initiateur ARNtMet du trypanosome est localisé exclusivement dans 

le cytosol, le seul ARNtMet présent dans la mitochondrie de T. brucei est l’élongateur 

ARNtMet qui est importé depuis le cytosol. Dans les bactéries et les organelles, la 

formylation spécifique de l’initiateur methionyl-ARNtMet catalisée par la methionyl-

ARNt formyltransferase (MTF) est nécessaire au processus d’initiation de la 

traduction. L’initiateur formylmethionyl-ARNtMet résultant de cette réaction se lie 

alors avec le facteur d’initiation 2 de type bactérien (IF2), ce qui favorise l’intéraction 

de l’ARNt avec le ribosome. Etonnamment, dans la mitochondrie de T. brucei, une 

partie de l’élongateur ARNtMet importé est formylée par un orthologue de MTF dont 

la taille est spécialement grande [2]. Durant ce travail de thèse, nous avons identifié 

IF2 chez T. brucei et démontré que cette protéine est nécessaire à la croissance 

normale du parasite. De plus, nous avons montré qu’IF2 ne reconnaît l’élongateur 

methionyl-ARNtMet que si ce dernier est formylé. Ainsi, en complément de 

précédentes études [1, 2], ce travail met l’accent sur le double rôle de l’élongateur 
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cytosolique ARNtMet en tant qu’initiateur et élongateur dans un système de traduction 

mitochondriale (Résultats A). 

 

Pour être fonctionnel pendant la traduction, chaque ARNt doit être attaché à son acide 

aminé. Le processus d’attachement, appelé aminoacylation, est catalisé par des 

aminoacyl-ARNt synthétases. Etant donné que chez T. brucei les ARNts cytosoliques 

et importés proviennent du même ensemble de gènes nucléaires, on s’attend à ce 

qu’ils soient aminoacylés par les mêmes enzymes. Le fait que la plupart des 

aminoacyl-ARNt synthétases du trypanosome sont représentées par des gènes uniques 

supporte cette hypothèse. Cependant, le génome du trypanosome contient deux 

différents gènes codant pour deux tryptophanyl-tRNA synthétases de type eucaryote. 

Nous montrons dans ce travail que ces deux enzymes sont essentielles pour une 

croissance normale. De plus nous démontrons que la nécessité d’une deuxième 

tryptophanyl-tRNA synthétase chez T. brucei est due à l’édition intra-mitochondriale 

de l’ARNtTrp (tRNA editing) requise pour le ré-assignement du codon UGA en 

tryptophane (Résultats B). 

 

Dans la partie C des résultats, certains composants impliqués dans l’insertion de la 

sérine et de la sélénocystéine dans les protéines ont été caractérisés. Dans le contexte 

de l’import mitochondrial des ARNts nous avons montré que l’ARNtSec est le second 

ARNt localisé exclusivement dans le cytosol du trypanosome. 

 

Dans le but d’examiner le rapport entre l’import mitochondrial des ARNts et des 

protéines chez T. brucei, nous avons utilisé la technique de l’ARN interférence 

(RNAi) en vue de réduire sensiblement l’expression des homologues de Tim17-22 et 

Tim8-13. Ces protéines sont connues pour faire partie de l’appareil de translocation 

des protéines mitochondriales chez d’autres organismes. Les effets morphologiques 

causés par leur ablation sont présentés dans la partie D des résultats. 
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I. Introduction 

A. Mitochondrial tRNA import 

A.1. General introduction 

The mitochondrial genome generally encodes only a small fraction of the organellar 

proteins, the vast majority of them being nucleus-encoded and imported from the 

cytosol. Nevertheless mitochondria contain a complete translation system based on 

rRNAs and tRNAs whose genetic origin is very often mitochondrial. However in 

plants, some fungi and protozoa, a variable number of tRNA genes are absent from 

the mitochondrial genome. In these organisms the lack is compensated for by import 

of a small fraction of the corresponding cytosolic tRNAs. The number of imported 

tRNAs extends from two in Saccharomyces cerevisiae [3, 4] to the complete set in 

trypanosomatids [1] and apicomplexans [5]. In Trypanosoma brucei the only cytosol-

specific tRNAs are the initiator tRNAMet and tRNASec (part C of the results). The 

same tRNAs are probably also cytosol-specific in Leishmania. Furthermore it has 

been suggested that unlike in T. brucei a tRNAGln, the tRNAGln (CUG), might be 

cytosol-specific [6].  

The question of how proteins are translocated into mitochondria has been investigated 

in great details but the import process of negatively charged tRNAs across the 

hydrophobic mitochondrial membranes is still poorly understood. In the present 

chapter the targeting and machinery of mitochondrial tRNA import are reviewed. 
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A.2. Targeting 

 
A.2.1. The import substrate 
 
Conflicting results were found regarding the nature of the import substrate in 

trypanosomatids. Some 5’-extended precursor tRNAs were found in the 

mitochondrial fraction of T. brucei [7]. For example the dicistronic precursor 

containing tRNASer(CGA) – tRNALeu(CAA) was found in both the cytosol and the 

mitochondrion of T. brucei [8]. In addition the dicistronic tRNA substrate was 

imported in vitro while the mature tRNALeu was not [9]. Furthermore a sequence 

motif, which acts as an import signal was identified in the 5’ extension of the 

precursor tRNALeu [10]. In contrast to these results, in vivo studies showed that three 

different tRNAs were efficiently imported either expressed in their own genomic 

context or containing various lengths of the 5’flanking sequences from different 

tRNAs [11]. In the same study it was demonstrated that even heterologous tRNAs 

containing non trypanosomal flanking sequences were imported. Furthermore, a 

tagged version of tRNALeu(CAA) containing 0, 10, 59 or 216 nucleotides of its 5’ 

flanking sequence was expressed in T. brucei and shown to be imported with the same 

efficiency than the WT tRNALeu(CAA) in all four cases [1]. Transfection of 

Leishmania tarentolae with constructs allowing expression of tagged tRNAIle and 

tRNAGln were performed to analyze the importance of the 5’ flanking genomic 

sequence for in vivo localization [12]. Exchange or deletion of these flanking 

sequences changed neither their expression nor the extent of their mitochondrial 

(tRNAIle) and cytosolic (tRNAGln) localization. Finally in L. tarentolae, five different 

imported tRNAs were shown to be processed at their 5’ and 3’ ends before export 

from the nucleus [13]. The same study showed that in vitro the T7-transcribed mature 

tRNAIle is imported more efficiently than its 5’ extended precursor. 

These data suggest that the precursors are not the in vivo import substrates. Primer 

extension analysis of mitochondrial tRNAs from Leishmania tarentolae and 

Trypanosoma brucei has shown that the band corresponding to precursor tRNA might 

be derived from circularized mature tRNA molecules. It has been suggested that these 

molecules could be produced by an endogenous RNA ligase in vivo or during 

mitochondrial isolation [14]. 
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In summary these results suggest that the in vivo import substrate is the mature tRNA. 

 

A.2.2. Targeting signals 

Different in vivo and in vitro studies revealed the tRNA import signals in different 

species. These results have been reviewed by Bhattacharyya et al [15] (table 1). 

 
Table 1: Import signals in tRNAs (updated from [15]) 

Organisms tRNA species Location of signal Evidence Reference 

Trypanosoma 

brucei 

tRNAMet-e(CAU) 

tRNALeu(CAA) 

T arm 

5’ flank 

Point mutation 

Deletion, 

point mutation 

[16] 

[10] 

Leishmania spp tRNATyr(GUA) 

tRNAIle(UAU) 

 

tRNATrp(CCA) 

tRNAThr(AGU) 

tRNAGlu(UUC) 

D arm 

D arm 

V-T arm 

Anticodon 

V-loop 

Anticodon 

Fragmentation, point 

mutation 

Domain swap 

Fractionation 

C→U editing 

Base insertion 

Base modification 

[17] 

[12] 

[18] 

[13] 

[19] 

[20] 

Saccharomyces tRNALys(CUU) Anticodon 

Acceptor stem 

Point mutation [21] 

Tetrahymena tRNAGln(UUG) Anticodon Point mutation [22] 

Arabidopsis tRNAVal(AAC) 

 

tRNAAla(UGC) 

Anticodon + D stem 

T-domain 

Acceptor stem 

Point mutation 

Point mutation 

Point mutation 

[23] 

[24] 

[25] 

Tobacco tRNAGly(UCC) Anticodon +  

D-domain 

Point mutation [26] 

 

From these findings it is clear that no universal signal exists. In some cases there are 

even several independent signals in the same tRNA, like in Leishmania 

tRNAIle(UAU), yeast tRNALys(CUU) and Arabidopsis tRNAVal(AAC). 

tRNA import has also been studied in the apicomplexan Toxoplasma gondii [5]. In 

this work the authors expressed the T. gondii WT tRNAMet-i and a variant containing 

the T-arm of tRNAMet-e in Trypanosoma brucei. After expression both tRNAs are 

retained in the cytosol. This was unexpected since the trypanosomal T-arm of 

tRNAMet-e rendered the trypanosomal tRNAMet-i importable [16]. Hence the import 

signals seem to be different in apicomlexans than in T. brucei, but one cannot exclude 
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that the expression in T. gondii itself would provide different results. Furthermore the 

tRNAGln and tRNATrp of T. gondii do not contain any thio-modified nucleotides in the 

cytosol and mitochondrion, respectively, which is also different from the situation in 

trypanosomatids [5, 20, 27]. 

The role of nucleotide modifications in tRNA import has been investigated in several 

studies. The mitochondrial and cytosolic forms of the tRNALys, tRNALeu, tRNATyr of 

T. brucei were compared by direct enzymatic sequence analysis and were shown to be 

modified in the mitochondrion on a conserved cytidine residue [28]. A mutant form of 

the tRNATyr which cannot be modified was expressed in T. brucei and found in the 

mitochondrial fraction. This suggests that the modified cytidine is not required for 

import. However in Leishmania, the wobble position of the tRNAGlu(UUC) and 

tRNAGln(UUG) was shown to contain a cytosol-specific thiomodification [20]. 

Interestingly the cytosolic fraction of tRNAGlu(UUC) was less efficiently imported 

into isolated mitochondria than the corresponding in vitro transcript, which suggests 

that the thio-modification acts as a retention signal. Unfortunately however no data 

are available concerning the import efficiency of the tRNAGlu(UUC) isolated from 

mitochondrial extract. Hence, one cannot conclude that the thiomodification alone is 

sufficient to prevent import and complementary in vivo experiments would therefore 

be of great interest. Similarly, native tRNAMet-e was isolated either from the cytosol or 

the mitochondrion of T. brucei, and tested for in vitro import [16]. The result was that 

only the mitochondrial form of the tRNA was imported suggesting that nucleotide 

modification(s) might play a role in targeting. 

 

 

A.2.3. tRNA – tRNA interactions during import 

In an in vitro system derived from Leishmania, tRNAs were shown to interact 

cooperatively or antagonistically for transfer into the mitochondrion [18, 29]. The 

tRNAs were classified in two classes: type I tRNAs, where the anticodon and D-arm 

serve as import signals, have a high intrinsic transfer efficiency. However type II 

tRNAs, with variable loop and T-arm as import signals, have a low intrinsic transfer 

efficiency. Furthermore, type I tRNAs stimulate the translocation of type II tRNAs, 

whereas type II inhibit the import of type I. However, so far this “ping-pong” 

mechanism of tRNA import has not been described in any other species. 
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A.2.4. Targeting factors 

A number of cytosolic tRNA import factors have been described in yeast [30, 31]. 

First of all, in vitro import of the tRNAlys(CUU) requires addition of  the precursor 

form of the mitochondrial lysyl-tRNA synthetase (preMSK) and the cytosolic lysyl-

tRNA synthetase [30, 32]. Aminoacylation of tRNAlys(CUU) by the cytosolic enzyme 

was initially thought to be a prerequisite for import, but some poorly aminoacylated 

mutant in vitro transcripts were efficiently imported [21]. In the same work it was 

shown that the import correlates with the capacity of the tRNA to bind preMSK, 

suggesting that as long as the tRNA still binds to preMSK, aminoacylation is not 

necessary for import. However binding to preMSK is not sufficient for mitochondrial 

import of tRNAlys(CUU). Recently, another cytosolic factor has been identified, the 

glycolytic enzyme enolase. This protein is required for in vivo import of 

tRNAlys(CUU), since its depletion inhibits tRNA import [31]. Furthermore the 

addition of both recombinant preMSK and enolase proteins to the aminoacylated 

tRNAlys(CUU) is sufficient to induce in vitro import. The authors also showed the 

requirement of the imported tRNAlys(CUU) for proper mitochondrial translation, 

since the absence of enolase and subsequent inhibition of mitochondrial import 

affected mitochondrial translation. In yeast another nucleus-encoded tRNA (tRNAGln) 

was recently reported to be targeted to mitochondria [4]. In this study it was shown 

that a fraction of cytosolic glutaminyl-tRNA synthetase is imported into the 

mitochondrion where it aminoacylates the imported tRNAGln. These experiments 

suggest the absence of the transamidation pathway in yeast mitochondrion. The 

requirement of the cytosolic tRNAGln for mitochondrial translation in vivo was shown 

by expressing a suppressor version of the cytosolic tRNAGln which was able to rescue 

a cox2-114UAG mutation. Surprisingly in vitro import of uncharged tRNAGln did not 

depend on the addition of cytosolic factors suggesting that this tRNA is imported by a 

different import mechanism than the tRNAlys(CUU). However cytosolic 

contamination of mitochondrial preparation cannot be excluded and additional 

experiments will be required to prove that there are indeed two distinct tRNA import 

mechanisms in yeast.  

Aminoacylation or the involvement of aminoacyl-tRNA synthetases does not seem to 

be a prerequisite for tRNA import in general. In Tetrahymena only one of three 

tRNAGln isoacceptors is imported [33]. In plants, in vitro tRNA import experiments 
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showed that aminoacylation is not required for import [34]. In vivo however absence 

of aminoacylation often correlates with absence of import. For example a non-

acylated variant of tRNAAla was not imported [25]. In addition, when misacylated 

with methionine, a mutant tRNAVal was retained in the cytosol of transgenic tobacco 

cells [23]. Nevertheless, while correct aminoacylation might be required for in vivo 

import, it is clearly not sufficient. In Solanum tuberosum three tRNAGly isoacceptors 

are recognized by the same glycine-tRNA synthetase, but only two of them are 

imported [35]. In addition a mutant tRNAVal containing the D-domain of the cytosol 

specific tRNAMet is aminoacylated by valyl-tRNA synthetase but not imported [23]. 

More recently it was shown that the tobacco tRNAGly(UCC) containing the anticodon 

of the non imported tRNAGly(GCC) remains in the cytosol even if correctly 

aminoacylated [26]. In Trypanosoma brucei the aminoacylation is probably not 

necessary for in vivo import, since an unspliced mutant version of tRNATyr which 

cannot be aminoacylated is nevertheless imported albeit less efficiently than wild type 

[36]. In addition the tRNAMet-i and tRNAMet-e are aminoacylated by the same enzyme 

but only tRNAMet-e is imported, suggesting that the methionyl-tRNA synthetase is not 

involved in import. Finally no addition of cytosolic factors is required for in vitro 

import of tRNAs in trypanosomatids. In Leishmania aminoacylation did not influence 

the in vitro import efficiency [15]. As mentioned in part A.2.2. the determinant for 

import of trypanosomal tRNAMet-e is localized in the T-stem [16], and overlaps with 

the main determinants of tRNAMet-i preventing the binding to the elongation factor 1α 

(EF-1α) in vertebrates [37]. It is interesting to note that in T. brucei the only cytosol 

specific tRNAs are the tRNAMet-i and the tRNASec, which are also the only tRNAs 

expected not to bind to EF-1α. This leads to the hypothesis that in T. brucei EF-1α 

might serve as a tRNA import factor. RNAi against EF-1α greatly decreased tRNA 

import efficiency of a newly synthesized tRNA (Bouzaidi-tiali et al, unpublished). 

However RNAi against eIF-2, which specifically binds to the tRNAMet-i, did not affect 

import. The authors could show that the import defect was not a secondary effect of 

translational deficiency, because the tRNA import was affected before translation. 

Another evidence that EF-1α might be used as a tRNA import factor is provided by 

data recently obtained for the trypanosomal tRNASec (Aeby et al, unpublished). 

tRNASec does not depend on its binding to EF-1α for interaction with the ribosome. 

Instead it is recognized by a specific elongation factor called EFsec in eukaryotes [38] 
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and SelB in bacteria [39]. Expression of a tRNASec variant, where the two non 

Watson-crick base pairs supposed to act as antideterminant for EF-1α binding [40] 

were replaced, leads to import of a small fraction of the tRNA into the mitochondrion. 

Hence these results suggest that even if the trypanosomal in vitro tRNA import 

system does not require addition of cytosolic factors, in vivo import relies on soluble 

factors, which may act in binding of the tRNA to the mitochondrial surface. 

 

 

A.3. Membrane translocation 

A.3.1. Components 

In yeast it was shown that an intact protein translocation machinery is required for 

import of the tRNALys(CUU) [41]. It is thought that the tRNALys is cotranslocated 

with preMSK through the protein import channel. However unfolding of proteins is a 

prerequisite for import into mitochondria, which raises the question of how the 

unfolded preMSK could form a complex with the tRNALys during the import process. 

There is presently no data available about how the tRNAGln crosses the yeast 

mitochondrial membranes, except that it is by a different mechanism. 

In trypanosomatids tRNAs and proteins are translocated by two different pathways 

[42]. In vitro tRNA import studies showed that pretreatment of the mitochondria with 

proteinase inhibited tRNA import in T. brucei and two Leishmania species. This 

demonstrates the requirement of proteinaceous receptors on the surface of the 

mitochondria [43]. Moreover treatment of mitochondria with an antibody against a 15 

kDa RNA binding protein associated with the outer membrane inhibited in vitro 

tRNA import in Leishmania [44]. However the identity of this protein is not known. 

The localization of this receptor revealed that it is both associated with mitochondria 

and, surprisingly, present throughout the cell [44]. Several results have been recently 

obtained about transfer through the mitochondrial inner membrane in Leishmania. 

First, a large multi-subunit complex of 640 kDa called RIC (RNA import complex) 

has been isolated from the inner membrane. When incorporated into liposomes this 

complex induced ATP- and proton motive force-dependent import activity [45]. In 

addition this complex contains a receptor for the type I tRNAs and another one for the 
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type II tRNAs. It was suggested that binding of type I tRNAs to their receptor induces 

a conformational change in the type II tRNA receptor which opens up or exposes its 

tRNA binding site. Then the attachment of type II tRNAs with their receptor would 

destabilize the type I complex. This model of allosteric inter-tRNA interactions is in 

agreement with the “ping-pong” model. Recently two components of the RIC were 

identified as the α-subunit of the F1 ATP synthase, termed RIC/F1α, and the 

homologue of the subunit 6b of ubiquinol cytochrome c reductase (respiratory 

complex III), termed RIC8A/UCR6b [46-48]. RIC/F1α interacts with and is activated 

by type I tRNAs and RIC8A/UCR6b is a type II tRNA receptor. In addition it was 

shown that both receptors interact cooperatively and antagonistically as predicted by 

the ping-pong model. Inducible antisense–mediated depletion of RIC/F1α affected in 

vivo import of type I and II tRNAs, and knock-down of RIC8A/UCR6b decreased 

import of type II tRNAs only. Thus in Leishmania it seems that the mitochondrial 

tRNA import machinery consists in part of bifunctional respiratory components. 

 

 

A.3.2 Energetics 

The extrusion of protons from the mitochondrial matrix generates a trans-membrane 

potential with a negative charge on the matrix side. This raises the question of how 

polyanionic tRNAs can cross the inner membrane against the electrostatic repulsion. 

In yeast, this problem is probably solved by co-import with mitochondrial pre-

proteins. In Leishmania tropica, as described below, the protons may act to neutralize 

the negative charges on the RNA phosphate groups [49]. 

In all systems studied so far, ATP is used as an energy source in tRNA import. In 

Leishmania [50] and Trypanosoma [9] ATP hydrolysis is required both in the matrix 

and outside of the mitochondrion. In the latter case the role of ATP is not clear: one 

hypothesis is that a helicase-like molecule would use ATP to unfold tRNA for 

subsequent transfer [15]. 

The role of the electrochemical proton gradient at the inner membrane has been 

investigated by using uncouplers which dissociate the proton flux toward the matrix 

from ATP synthesis. Protonophores affect tRNA import in yeast [41] and potato [34]. 

In trypanosomatids contradictory results were obtained. The L. tropica [45, 50] but 

not the L. tarentolae [51] system is sensitive to uncouplers. Moreover two different 
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results were obtained in two independent studies in T. brucei [9, 42]. The lack of 

consensus in these experiments might be explained by the fact that the precise final 

location of the tRNAs during the different import experiments was often not 

investigated. It is possible that the tRNAs can cross the outer but not the inner 

membrane in presence of an uncoupler. Crossing the outer membrane is sufficient for 

protection against RNAse treatment. A stepwise transfer of tRNA across the 

mitochondrial membranes of Leishmania tropica has been proposed, since the 

dissipation of the membrane potential and inhibition of the ATPase almost did not 

affect the translocation across the outer membrane but strongly decreased import 

through the inner membrane [50]. Interestingly all the in vitro import systems studied 

to date are sensitive to oligomycin, which inhibits the F1-F0 ATPase [15].  

 

 

A.3.3 Model in Leishmania 

The detailed study of bioenergetic properties of the reconstituted RIC-liposomes 

tRNA import system together with the recent identification of two molecular 

components of RIC greatly improved the comprehension of the tRNA import 

mechanism in Leishmania tropica [46-49]. The present section describes the main 

steps of tRNA import across the inner membrane of Leishmania tropica (fig. 1): 

1) Type I tRNA binds to its specific receptor RIC/F1α, which induces the transport of 

ATP through the membrane via a channel similar or identical to a 

carboxyatractyloside-sensitive ADP/ATP translocator. 

2) Binding of type I tRNA to RIC/F1α enables the binding of type II tRNAs to 

RIC8A/UCR6b, and activates ATP hydrolysis at the inner side of the membrane. This 

model includes the allosteric modulation of the type I and type II tRNA receptors,  

which is thought to regulate import of the tRNAs.  

3) The energy produced by ATP hydrolysis is used to pump protons from inside to 

outside through an oligomycin sensitive channel, which generates a membrane 

potential inhibited by the protonophore uncoupler CCCP. 

 4) The proton gradient induces the opening of a still unknown tRNA import channel 

and subsequent translocation of tRNAs. Importantly it was shown that import of 

tRNA into RIC-liposomes still occured efficiently when ATP was replaced by low 
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external pH. In that case the tRNA import became insensitive to oligomycin, which 

makes sense since the proton pump is no more required in this situation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Model for tRNA import through the inner membrane of Leishmania mitochondria (updated 

from [15]). For details see text. CA, carboxyatractyloside. OLI, oligomycin. CCCP, carbonylcyanide 

m-chlorophenylhydrazone (a protonophore). 

 

In the future, the availability of efficient molecular tools will allow to study if, like in 

the Leishmania system, some ancient respiratory components are involved in 

mitochondrial tRNA import in the closely related species Trypanosoma brucei. 
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B. Consequences of mitochondrial tRNA 

import 
 

An important feature of mitochondrial tRNA import is that the imported tRNAs are 

always of the eukaryotic-type. The mitochondrial translation system however, due to 

the evolutionary origin of the mitochondrion, is of bacterial-type and is expected to be 

incompatible with at least some eukaryotic-type tRNAs. Unique evolutionary 

adaptations of the mitochondrial translation system for proper recognition and use of 

eukaryotic-type tRNAs are therefore expected. Most of data presently available about 

the consequences of mitochondrial tRNA import have been obtained in Trypanosoma 

brucei and are reviewed in this chapter. 

 

 

B.1. Translation initiation 

B.1.1. tRNAMet in eukaryotic and bacterial translation systems 

Protein synthesis is initiated with methionine in eukaryotes and archea and with 

formyl-methionine in bacteria and organelles. There are two types of tRNAMet, 

namely the initiator tRNAMet (tRNAMet-i), which is used for initiation of protein 

synthesis and the elongator tRNAMet (tRNAMet-e), which functions in the insertion of 

methionine into the nascent polypeptidic chain [52, 53]. The elongator tRNAMet is 

similar in all organisms but the initiator tRNAMet can be sudivided into two classes, 

the eukaryotic and the bacterial-type initiator tRNAsMet. Formylation of methionine 

on the charged tRNAMet-i is required in bacteria and organelles and is performed by an 

enzyme called methionyl-tRNAMet formyltransferase (MTF). This protein is present in 

bacteria and organelles, but not in the eukaryotic cytosol and in archea. The major 

recognition element for MTF is the C-A mismatch at position 1-72 which is 

conserved in bacterial tRNAMet-i [54]. The eukaryotic and archeal tRNAMet-i carry A-

U instead of a mismatch at the same position. Interestingly in mitochondria there is 

often only a single tRNAMet which acts as an initiator in the formylated state and as an 
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elongator when non-formylated [55]. In these cases the tRNAMet resembles a 

tRNAMet-i, but surprisingly contains a A1-U72 base pair, like the eukaryotic-type 

tRNAMet-i.  

At the beginning of the translation initiation process, the charged tRNAMet-i is bound 

to the initiation factor 2 (IF2), which promotes the GTP-dependent interaction of the 

complex with the ribosome [56]. In the cytosol the eukaryotic IF2 (eIF2) directly 

recognizes the eukaryotic-type methionyl-tRNAMet-i and promotes its binding to the 

ribosome. In bacteria and organelles however, the aminoacylated tRNAMet-i must be 

formylated before it can interact with the bacterial-type IF2. 

 

 

B.1.2. Mitochondrial translation initiation in T. brucei 

Unlike most trypanosomal tRNAs, the tRNAMet-i is exclusively localized in the 

cytosol. As a consequence, the only tRNAMet present in the mitochondrion of T. 

brucei is the imported eukaryotic tRNAMet-e [1]. It has been shown that trypanosomes 

adapt to this situation by formylating a fraction of the imported eukaryotic-type 

tRNAMet-e using an extraordinary large MTF with an unusual substrate specificity [2]. 

In the part A of the results we identified and characterized the mitochondrial initiation 

factor 2 (IF2) of T. brucei and we have shown that its carboxy-terminal domain binds 

the formylated, but not the unformylated, eukaryotic tRNAMet-e.  

 

 

B.2. Aminoacylation of tRNAs 

In order to be used in translation, each tRNA needs to be charged with its cognate 

amino acid. This two-steps reaction is catalyzed by an aminoacyl-tRNA synthetase 

(aaRS) in presence of ATP. The amino acid is first activated by AMP and reacts then 

with the tRNA to produce the aminoacyl-tRNA [57]. Although there are some 

exceptions, there is generally a single aaRS for each amino acid. In a defined 

translation sytem all the tRNAs accepting the same amino acid are called isoacceptors 

and are aminoacylated by the same aaRS. One mechanism ensuring that a tRNA is 

charged with the correct amino acid is based on identity elements in certain positions 
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of the tRNA that are specifically recognized by the aaRS [58]. Usually the identity 

elements are found in the anticodon and / or the acceptor stem. For a few tRNAs, 

however, the major recognition elements are present in other regions of the tRNA 

molecule [59].  

 

 

B.2.1. AaRSs in most eukaryotes 

In most non plastid containing eukaryotes there are two sets of aaRSs: one group for 

aminoacylation in the cytosol and another one for charging of tRNAs in the 

mitochondria. The mitochondrial aaRSs are encoded in the nucleus and imported into 

the mitochondria [60]. Their evolutionary origin, like the one of the mitochondrial 

tRNAs, is nevertheless bacterial. Furthermore it is known that in most eukaryotes the 

cytosolic and mitochondrial sets of aaRSs overlap to some extent and that a few 

enzymes are dually targeted to both compartments [61]. For instance, a survey of the 

Saccharomyces cerevisiae genome database reveals annotated genes encoding 36 

different aaRSs. They can be divided into 16 cytosol-specific ones, 14 mitochondrial 

enzymes and 4 which are known to be dually targeted (www.yeastgenome.org). 

 

 

B.2.2. AaRSs in Tetrahymena and T. brucei 

In organisms that import tRNAs we always find dual targeting of tRNAs. This means 

that the cytosolic and the mitochondrial fractions of an imported tRNA derive from 

the same nuclear gene. Therefore one can expect that both tRNA fractions are 

aminoacylated by the same aaRS. Analysis of the number of annotated aaRS genes 

for a given amino acid and the presence of a corresponding mitochondria-encoded 

tRNA gene allows a preliminary test of this hypothesis. Thus this analysis was 

performed with the genomes of Tetrahymena thermophila and Trypanosoma brucei. 

In Tetrahymena thermophila only 8 tRNA genes are encoded in the mitochondrial 

genome [62]. Therefore the missing tRNAs are probably imported from the cytosol. A 

genomic survey reveals that 83% of the aaRSs whose corresponding tRNAs are not 

mitochondria-encoded are represented by single genes (Tetrahymena thermophila 

http://www.yeastgenome.org
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genome project, http://www.tigr.org/tdb/e2k1/ttg/) whereas for cytosol-specific 

tRNAs we find a single aaRS gene in 10% of the cases only (table 2). 

 
Table 2: relationship between the number of predicted aaRS genes and the expected import of the 

corresponding tRNA in Tetrahymena thermophila. 

Amino acid AaRS annotated once AaRS annotated twice tRNA predicted to be 
imported [62] 

Pro   x (3)   
Leu   x   
Asn x   x 
Trp   x   
Glu   x   
Tyr x     
Gly x   x 
Phe   x (3)   
His   x   
Asp x   x 
Gln   x x 
Ile   x x 
Lys x   x 
Met   x   
Arg x   x 
Thr x   x 
Cys x   x 
Ala x   x 
Ser x   x 
Val x   x 

- Grey rows: only one synthetase is predicted to charge the cytosolic and mitochondrial fractions of the 

corresponding tRNA 

- (3): annotated 3 times 

 

In T. brucei all the mitochondrial tRNAs are partially imported from the cytosol [1] 

and are expected to be charged by the same set of enzymes in both compartments. 

This has been experimentally shown for tRNAGlu and tRNAGln [63]. Furthermore, a 

genomic survey of the T. brucei genome database revealed that most (85%) aaRSs 

corresponding to imported tRNAs are represented by single genes 

(www.sanger.ac.uk/Projects/T_brucei/). However there are three aaRSs represented 

by two different genes, namely the lysyl-, aspartyl-, and tryptophanyl-tRNA 

synthetases (LysRS, AspRS and TrpRS). The reason why, in these three cases, there 

are two enzymes for the same substrate is not obvious. In order to address this 

question we decided to focus on the tryptophanyl-tRNA synthetases (TrpRS). In part 

http://www.tigr.org/tdb/e2k1/ttg
http://www.sanger.ac.uk/Projects/T_brucei
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B of the results we show that the presence of two distinct TrpRSs in T. brucei is due 

to mitochondria-specific modifications of the tRNATrp. 

 

 

B.2.3. Glutaminyl-tRNA formation 

Although most organisms use 20 different aaRSs, one for each standard amino acid, 

many systems do not need the glutaminyl-tRNA synthetase (GlnRS). In these 

organisms the glutaminyl-tRNAGln is indirectly synthesized by mischarging of the 

tRNAGln with glutamate, a reaction achieved by a non-discriminating GluRS. The 

glutamyl group of the resulting glutamyl-tRNAGln is then transformed into glutaminyl 

by an enzyme called Glu-tRNAGln amidotransferase [64]. This process is called the 

transamidation pathway and is used by most bacteria (for exception see [65]) and 

archea but not by the eukaryotic cytosol which utilizes GlnRS [64, 66]. 

Since the mitochondria and chloroplasts have a bacterial origin, they are expected to 

use the transamidation pathway. Indeed it has been shown that most organelles lack 

the GlnRS activity and use the transamidation process for Gln-tRNAGln formation 

[67]. However, some exceptions have been found: GlnRS activity has been detected 

in mitochondria of yeast [4],  Tetrahymena [68] and trypanosomatids (see below) [63, 

69]. 

 

 

B.2.3.1. Situation in T. brucei 

 

It has been shown in this organism that the cytosol and mitochondrion contain the 

same eukaryotic-type GlnRS [63]. Furthermore the glutamyl-tRNAGlu synthesis in the 

cytosol and mitochondrion is catalyzed by a single eukaryotic-type discriminating 

GluRS. RNAi experiments demonstrated that these two enzymes are responsible for 

the entire GlnRS and GluRS activities that are detected in the cytosol and in the 

mitochondrion.  

The evolutionary origin of mitochondria is bacterial. Thus, the mitochondrion of T. 

brucei originally contained mitochondrial tRNA genes. The absence of mitochondrial 

tRNA genes and the import of cytosolic nucleus-encoded tRNAs is therefore a 

derived trait [70]. It is possible that transamidation occured in the bacterial ancestor 
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but the former bacterial-type GluRS and Glu-tRNAGln amidotransferase could not 

recognize the eukaryotic-type tRNAGln during establishment of tRNA import. In that 

case the loss of the transamidation pathway and the subsequent appearance of direct 

glutaminyl-tRNAGln formation in the T. brucei mitochondrion would represent an 

adaptation to mitochondrial tRNA import. 

 

 

C. Conclusions 

The recent results obtained about identity of the RIC in Leishmania indicate that 

during evolution of mitochondrial tRNA import, ancient respiratory components 

acquired new molecular functions. It means that these proteins can assemble 

alternatively into two different complexes without causing disruption of either 

function. This differs from the yeast situation where the known tRNA import system 

consists of protein translocation components. Looking at the whole tRNA import 

process, differences between import systems are not only observed in the membrane 

translocation apparatus but also among the location of import signals and the 

cytosolic factors. Thus there is a great variability of the mitochondrial tRNA import 

process in different species. This suggests that mitochondrial tRNA import probably 

evolved multiple times independently in different species. This is in full agreement 

with the proposed polyphyletic evolutionary origin of tRNA import, based on the 

occurrence of tRNA import in some species and its absence in closely related ones 

[71].  

The reason why some but not all mitochondria require imported eukaryotic-type 

tRNAs remains a matter of speculation. One possible explanation would be that the 

production of only one tRNA set for the whole cell (like in trypanosomatids) instead 

of two requires less energy and therefore would be an advantage. Alternatively, since 

generally the mutation rate is much higher in the mitochondrial genome than in the 

nucleus, the use of nucleus-encoded tRNAs would protect mitochondrial tRNAs from 

mutations. 
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Understanding mitochondrial tRNA import process is not only interesting for basic 

science, but also for biomedical research, since there are many important human 

pathogens which import tRNAs into their mitochondria: 

- Trypanosoma species which cause sleeping sickness and chagas disease in human 

and Nagana in cattle. 

- Leishmania species wich are spread by the bite of infected sandflies and responsible 

for leishmaniasis. 

- Toxoplasma gondii which infects most mammals and is responsible for 

opportunistic infections associated with AIDS. 

- Plasmodium falciparum which is the causing agent of malaria, the most important 

parasitic disease of humans. 

Since the human or animal hosts of these parasites do not import any tRNA into their 

mitochondria, the import machinery would be an interesting drug target.  

Understanding tRNA import process might also allow to develop strategies that 

potentially could cure mitochondrial diseases that are associated with mutations in 

mitochondria-encoded tRNAs, like MELAS (mitochondrial myopathy 

encephalopathy with acid lactosis and stroke-like episodes) and MERF (myoclonic 

epilepsy and ragged red fibres syndrome) [72]. In yeast it has been shown that an 

imported tRNA can suppress a mitochondrial mutation [73]. Isolated human 

mitochondria are able to import the yeast tRNALys(CUU) in the presence of yeast 

soluble factors, suggesting that they contain a cryptic tRNA import pathway that is 

not used in vivo. Furthermore, expression of a derivative of the yeast tRNALys in 

human cells affected by the MERF mutation and subsequent internalization of this 

tRNA into the mitochondria suppressed the mitochondrial defects associated with this 

mutation [74]. 

Finally it was shown that an unspliced variant of tRNATyr can be used to import 

synthetic introns into the mitochondria of Leishmania tarentolae [75]. Since 

transformation of mitochondria is generally not possible, one could use the import of 

such synthetic introns to study mitochondrial gene function. 
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The mitochondrion of Trypanosoma brucei lacks tRNA
genes. Its translation system therefore depends on the
import of nucleus-encoded tRNAs. Thus, except for the
cytosol-specific initiator tRNAMet, all trypanosomal
tRNAs function in both the cytosol and the mitochon-
drion. The only tRNAMet present in T. brucei mitochon-
dria is therefore the one which, in the cytosol, is in-
volved in translation elongation. Mitochondrial
translation initiation depends on an initiator tRNAMet

carrying a formylated methionine. This tRNA is then
recognized by initiation factor 2, which brings it to the
ribosome. To guarantee mitochondrial translation initi-
ation, T. brucei has an unusual methionyl-tRNA formyl-
transferase that formylates elongator tRNAMet. In the
present study, we have identified initiation factor 2 of
T. brucei and shown that its carboxyl-terminal domain
specifically binds formylated trypanosomal elongator
tRNAMet. Furthermore, the protein also recognizes the
structurally very different Escherichia coli initiator
tRNAMet, suggesting that the main determinant recog-
nized is the formylated methionine. In vivo studies using
stable RNA interference cell lines showed that knock-
down of initiation factor 2, depending on which con-
struct was used, causes slow growth or even growth
arrest. Moreover, concomitantly with ablation of the
protein, a loss of oxidative phosphorylation was ob-
served. Finally, although ablation of the methionyl-
tRNA formyltransferase on its own did not impair
growth, a complete growth arrest was observed when it
was combined with the initiation factor 2 RNA interfer-
ence cell line showing the slow growth phenotype. Thus,
these experiments illustrate the importance of mito-
chondrial translation initiation for growth of procyclic
T. brucei.

All organisms have two distinct tRNAsMet, one specialized
for decoding the initiation codon (mainly AUG) and another one
dedicated for the insertion of methionine into internal peptidic
linkages (1, 2). The basic features of translation initiation,
namely the binding of the initiator tRNAMet (tRNAMet-i)1 to
initiation factor 2 (IF2) and the subsequent GTP-dependent

interaction of the complex with the ribosome are universally
conserved (3). Thus, a general feature of IF2 from all organisms
is that it must specifically bind tRNAMet-i and interact with the
ribosome. However, a more detailed analysis reveals some in-
teresting differences between the translation initiation process
in bacteria and in the eukaryotic cytosol. In the latter, the
aminoacylated eukaryotic tRNAMet-i, carrying the diagnostic
A1:U72 base pair, directly binds to eukaryotic IF2 and forms a
GTP-dependent ternary complex that binds to the 40 S ribo-
some. In bacteria binding of aminoacylated bacterial-type
tRNAMet-i (recognized by the C1:A72 mismatch) to bacterial
IF2 requires prior formylation of the methionine on the
charged tRNAMet-i. This reaction is catalyzed by the methionyl-
tRNA formyltransferase (MTF), which is not found in the eu-
karyotic cytosol (1, 3). Furthermore, bacterial ribosomes are
smaller and in many ways qualitatively different from their
eukaryotic counterparts. However, although bacterial and eu-
karyotic IF2 both bind tRNAsMet-i, they are not (even though
implied by their names) evolutionarily related. Instead, it is
eIF5B that is the eukaryotic orthologue of bacterial IF2. eIF5B
does not directly bind tRNA but, just as proposed for bacterial
IF2, facilitates association of the two ribosomal subunits (4).

Mitochondria are of bacterial evolutionary origin, and their
translation system is therefore of the bacterial type. Thus, the
two key factors involved in bacterial translation initiation,
MTF and IF2, are also found in mitochondria (5). MTF of yeast
(6, 7) and bovine mitochondria (8) have been characterized and
shown to formylate their respective mitochondria-encoded
tRNA substrates. Interestingly, in mammalian mitochondria,
only a single tRNAMet is found, which is used as an initiator in
the formylated state and as an elongator when carrying a
non-derivatized methionine (5). In contrast to bacterial MTF,
the yeast enzyme appears to be dispensable for mitochondrial
translation, because a MTF disruption strain was still able to
grow on non-fermentable carbon sources (6). Mitochondrial IF2
of yeast (9) and bovine (10, 11) have also been characterized.
They are similar to the bacterial proteins, the highest homology
being found in the GTP-binding domain. Less, but still recog-
nizable, similarity is also detected in the carboxyl-terminal half
of the protein, which binds the formylated tRNAMet-i. The do-
main organization of the amino-terminal part of mitochondrial
IF2s, however, is quite variable (5). In line with this, it has
been shown in yeast that this domain is dispensible for IF2
function in vivo (12).

Mitochondrial translation in the parasitic protozoa Trypano-
soma brucei is unusual, because (due to the complete absence of
mitochondrial tRNA genes) it depends exclusively on the im-
port of cytosolic, nucleus-encoded tRNAs. Thus, trypanosomal
tRNAs all are of the eukaryotic type and function in both the
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cytosol and the mitochondrion (13–15). The only exception is
the eukaryotic-type tRNAMet-i, which is found in the cytosol
only (15). The elongator tRNAMet, identical to all other elonga-
tor tRNAs, is in part imported into the mitochondrion and
represents the only tRNAMet present in this compartment. A
fraction of this tRNA becomes formylated after import (16).
This results in the surprising situation in that, T. brucei mito-
chondria (a typical elongator tRNAMet) functions in translation
initiation, provided that it is formylated (17). In agreement
with this, it has been shown that the trypanosomal MTF,
unlike its counterpart in other organisms, selectively recog-
nizes elongator tRNAMet. The unusual nature of trypanosomal
MTF is also confirmed by sequence comparisons, which show
that the trypanosomal enzyme has twice the size of any of its
homologues (16). The aim of the present study was to charac-
terize mitochondrial IF2 of T. brucei to see whether, as pre-
dicted, it was able to interact with the formylated fraction of
the imported elongator tRNAMet.

EXPERIMENTAL PROCEDURES

Cells—Procyclic T. brucei, stock 427, was grown at 27 °C in SDM-79
medium supplemented with 5% fetal bovine serum. Cells were har-
vested at 3.5–4.5 � 107 cells/ml. Procyclic T. brucei, strain 29–13, on
which the RNAi knockdown cell lines are based, was grown in SDM-79
supplemented with 15% fetal calf serum, 50 �g/ml hygromycin, and 15
�g/ml G-418 and was harvested at a density of 1–2 � 107 cells/ml.

Recombinant IF2—The carboxyl-terminal region of T. brucei IF2 (aa
412–721) (Gene DB annotation Tb07.28B13.850), or a variant thereof
lacking the last 44 aa, were expressed as glutathione S-transferase
(GST) fusion proteins. To do so, IF2 gene fragments were prepared by
PCR using 5�-TAGGGATCCCCCGGGAAGACTACTTGCAG-3� as a for-
ward and 5�-TACTCGAGTCATATGGTGGTCTTCAC-3� or 5�-TACTC-
GAGTCACACATCACGTGGCTCCTC-3�, for the variant lacking the
carboxy terminus, as reverse primers and cloned into the BamHI- and
XhoI-digested pGex-5x-3 plasmid (Amersham Biosciences). The result-
ing constructs were transfected into Escherichia coli BL21, and the cells
were grown to mid-log phase. Induction was done by adding 0.1 mM of
isopropyl-�-D-thiogalactoside for 2 h at 25–27 °C. Induced cells (250 ml)
were washed in IF2 binding buffer (50 mM MOPS-NaOH, pH 7.5, 10 mM

MgCl2, 20 mM KCl, 1 mM dithiothreitol) and resuspended in 1⁄20 the
volume of the same buffer. Lysis by sonication and batch mode purifi-
cation of the recombinant protein by glutathione-Sepharose (Amersham
Biosciences) were performed as described by the manufacturer, except
that IF2 binding buffer was used. Binding was done overnight at 4 °C
using 250 �l of a 50% slurry of glutathione-Sepharose and the clarified
extract of a 250-ml culture. The yield was �190 �g of recombinant
protein/125 �l of bed volume of glutathione-Sepharose beads. The pu-
rity of the recombinant proteins was tested by SDS-PAGE. For the
IF-2/tRNA binding assay described below, glutathione-Sepharose-
bound recombinant proteins were used. To remove endogenous E. coli
tRNAMet-i, the glutathione-Sepharose-bound recombinant proteins had
to be treated with micrococcus nuclease (20 units/250 �l slurry) for 15
min on ice. To do so, 1 mM of CaCl2 had to be added. The reaction was
stopped by washing the beads in 500 �l of IF2 binding buffer containing
3 mM EGTA. Subsequently, the beads were washed three times in 500
�l of IF2 binding buffer alone and, finally, resuspended in IF2 binding
buffer to reach a 50% slurry.

Isolation of Total and Mitochondrial RNA—RNA from total cells and
isolated mitochondrial fractions of T. brucei, as well as E. coli RNA,
were purified by the acidic guanidinium isothiocyanate method (18).
Isolated RNAs were resuspended in 10 mM Na-acetate, pH 4,0 to avoid
deacylation during storage. Mitochondria were purified by the hypo-
tonic lysis method as described previously (19). Mitochondrial fractions
from the MTF-RNAi cell line (see Fig. 5) were obtained by digitonin
extraction (15, 20).

IF2/tRNA Binding Assay—Mitochondrial or total RNA of T. brucei
or total E. coli RNA (7 �g of each) was dissolved in 50 �l of IF2 binding
buffer containing 20 units of SuperRNasin (Ambion). The binding re-
action was initiated by the addition of 120 �l of a 50% slurry of IF2
binding buffer and glutathione-Sepharose beads containing �90 �g
each of IF2-GST fusion proteins or of GST alone. After incubation for 10
min at 23 °C, the reaction was spun at 500 � g, and 100 �l of the
supernatant was removed and kept at 4 °C. The resulting pellet was
washed twice in 100 �l of IF2 binding buffer, and the supernatant
fractions from the washes were pooled with the first supernatant. The

pellet (representing the bound RNAs) and the combined supernatants
(representing the unbound RNA) were brought to 400 �l by adding H2O.
After the addition of 0.2 M Na-acetate, pH 4, the samples were extracted
with H2O-equilibrated phenol, and after the addition of 20 �g of glyco-
gen, the samples were precipitated with 100% of ethanol. After a final
wash with 75% of ethanol, each RNA pellet was processed for electro-
phoresis on a denaturing 8 M urea/10% polyacrylamide gel by resuspen-
sion in 10 �l of 90% formamide and 20 mM EDTA. Northern blots were
done as described previously (14). The following 5�-end-labeled oligonu-
cleotides were used as probes: 5�-GTGAGGCTCGAACTCACG-3� (for
the T. brucei elongator tRNAMet), 5�-CCCACGCCTACGAATAGA-3� (for
the T. brucei tRNALeu), 5�-AGGCTGCTCCACCCCGCG-3� (for the
E. coli initiator tRNAMet), and 5�-CCGCTCGGGAACCCCACC-3� (for
the E. coli tRNATyr).

The 35S-labeled mitochondrial RNA fraction used for the binding
assay (shown in Fig. 2B) was prepared by in organelle aminoacylation
using [35S]methionine, as described previously (15). The labeled methi-
onine species were released by deacylation in 0.1 N NaOH for 30 min at
37 °C. Analysis of the released [35S]methionine species was done by thin
layer chromatography (TLC) on a cellulose plate, which was developed
in a 13:3:1 mixture of diethyl ether, acetic acid, and water (15).

RNAi—The RNAi constructs were prepared using the same previ-
ously described pLew 100-derived stem loop plasmid that carries
convenient restriction sites for cloning (21). A 549-bp-long fragment,
corresponding to position 156–704 of the IF2 coding sequence, was
PCR-amplified using, as a forward primer, 5�-GCGGGATCCAAGCTT-
GAGTGATGACCCCCGATG-3� and, as a reverse primer, 5�-GCGCTC-
GAGTCTAGATTGTGTGCAAGCTCAATC-3�. The resulting fragment
was cloned into the plasmid in the sense direction using HindIII/XbaI
sites and in the antisense direction using BamHI and XhoI sites. Two
versions of the plasmid were prepared. In the first one (TbIF2-Tb), the
sense and antisense sequences were separated by a fragment
corresponding to 690 nucleotides of the trypanosomal spliced leader
sequence (22), whereas in the second one (TbIF2-Mm), a 439-bp frag-
ment, corresponding to positions 341–779 of the mouse Pex11b mRNA,
was used as a spacer (23). Using the mouse sequence as a spacer yielded
a more efficient down-regulation of the targeted mRNA than if the
T. brucei sequence was used.2 The plasmids were linearized with NotI
and transfected into the procyclic T. brucei strain 29–13, which ex-
presses T7 RNA polymerase and the tetracycline repressor. Selection
with phleomycin, cloning, and induction with tetracycline were done as
described previously (24). For the IF2/MTF double RNAi cell line (see
Fig. 3D), we used the same plasmid that was used for the previously
described MTF RNAi cell line (16), except that the phleomycin resist-
ance gene was replaced by the puromycin resistance gene.

ATP Production Assay—ATP production assays using digitonin-
purified mitochondria were done exactly as described previously
(21, 25).

RESULTS

Primary Structure of IF2 of T. brucei—Searching the
T. brucei genomic data base, we found an open reading frame of
721 aa predicted to encode the orthologue of bacterial IF2. The
protein showed an overall identity of 33–35 and 30–32% to
bacterial and mitochondrial IF2s, respectively. The predicted
domain structure for mitochondrial IF2 (12) was retained (Fig.
1). A highly divergent amino-terminal domain (aa 1–135) was
followed by the highly conserved GTP binding domain (aa
136–283). The carboxyl-terminal region (aa 284–721) was less
conserved but contained the IF2 signature sequence (aa 628–
650) as described in the PROSITE data base (Fig. 1B). Bioin-
formatic analysis did not predict an obvious mitochondrial
targeting signal. However, in T. brucei, these signals were
often difficult to identify, because they can be very short.

It has been shown, for bacterial IF2, that the carboxyl-ter-
minal 110 aa are sufficient for binding of formylated tRNAMet-i

(26). Fig. 1B shows a multiple sequence alignment of the car-
boxyl-terminal 310 aa of the T. brucei IF2 with the correspond-
ing regions of two bacterial and two mitochondrial orthologues.
The best characterized IF2 carboxyl-terminal domain is the one
of Bacillus stearothermophilus, which has been subjected to

2 E. Ullu, personal communication.
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extensive mutational analysis and which structure has re-
cently been solved by NMR (26–28). These studies identified
the Cys-668 and two short peptides, KRYK (aa 699–702) and
ECG (aa 713–715), as the main determinants for tRNAMet-i

binding (numbers refer to the position of amino acids in the
B. stearothermophilus protein, Fig. 1B). Interestingly, except
for three conservative replacements (C668M, K699R, Y701F),
identical aa are found in the same relative position in the
T. brucei protein (Fig. 1B, asterisks). Although bacterial IF2
interacts with tRNAMet-i, the trypanosomal protein is predicted
to bind an elongator-type tRNAMet. Nevertheless, the elements,
which in the bacterial IF2 are required for binding of the
tRNAMet-i, have been conserved in the trypanosomal protein.

However, there are also sequence elements that are unique
for the trypanosomal IF2. These are an insertion of 27 aa and
a carboxyl-terminal extension of 44 aa (Fig. 1B). Modeling of
the trypanosomal sequence on the B. stearothermophilus struc-
ture (27) shows that the insertion localizes to a loop connecting
two � sheets and thus will most likely not significantly disturb
the structure. Interestingly, insertions at the same relative
position are found in the IF2 orthologues of two other trypano-
somatids (Leishmania major and Trypanosoma cruzi). How-
ever, although the length of these insertions (32 aa in L. major
and 26 aa in T. cruzi) are very similar to the 27 aa observed in
T. brucei, their sequences are not conserved. A similar situa-
tion is found for the carboxyl-terminal extensions. They are

also present in L. major (length, 50 aa) and T. cruzi (length,
39); however, in contrast to the trypanosomatid-specific inser-
tion, their sequences are highly similar.

The Carboxyl-terminal Domain of Trypanosomal IF2 Binds
Formylated Elongator-type tRNAMet—We wanted to test
whether trypanosomal IF2, as predicted, binds imported
formylated elongator tRNAMet. Thus, we expressed the carbox-
yl-terminal 310 aa of the T. brucei IF2 (and a variant thereof
lacking the carboxyl-terminal 44 aa) in E. coli. To simplify
purification, the IF2 peptides were expressed as GST fusions.
Affinity chromatography on glutathione-Sepharose beads
yielded eluates consisting of single proteins of the expected
molecular weights (data not shown). For the tRNA binding
assay, the final elution step was omitted, and the beads con-
taining the bound protein were directly incubated with isolated
total or mitochondrial RNA fractions from T. brucei. Thus, our
binding assay, comparable with the situation in vivo, was per-
formed in a complex mixture of RNAs. It was important to
isolate the RNAs under acidic conditions to keep the tRNAs in
an aminoacylated state. After the binding step, the beads were
recovered by centrifugation, and RNAs were isolated from the
supernatant and, after a washing step, from the pellet. Both
RNA fractions were separated by polyacrylamide gel electro-
phoresis and analyzed by Northern hybridizations. The results
in Fig. 2A show that, when incubated with isolated mitochon-
drial RNAs, �25% of the elongator tRNAMet present in this

FIG. 1. The T. brucei IF2 orthologue.
A, predicted domain structure of T. brucei
IF2. The highly conserved GTP binding
domain is shown in a gray box. The two
regions of IF2 that were expressed as GST
fusion proteins (Fig. 2) are indicated. B,
multiple sequence alignment by ClustalW
of the carboxyl-terminal 310 aa of the
T. brucei IF2 (Tb) with the corresponding
regions of two bacterial (Bs, B. stearother-
mophilus; Ec, E. coli) and two mitochon-
drial (mSc, Saccharomyces cerevisiae;
mBt, Bos taurus) orthologues. Residues in
the B. stearothermophilus protein identi-
fied as the main determinants for
tRNAMet-i binding are indicated by aster-
isks (28). IF2 signature sequences (aa
628–650), as described in the PROSITE
data base, are underlined.
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fraction is recovered in the pellet and thus is bound to the
carboxyl-terminal 310 aa of T. brucei IF2. The observed binding
was specific for elongator tRNAMet, as another elongator-type
tRNA, the tRNALeu, could not bind. Furthermore, interaction
with IF2 required methionylated tRNAMet, because it was pre-
vented by prior deacylation of the RNA fraction. Interestingly,
when incubated with isolated total RNA, consisting essentially
of cytosolic RNAs, no binding of aminoacylated elongator
tRNAMet was observed. The only difference between cytosolic
and imported mitochondrial elongator tRNAMet is that 40–50%
of the imported fraction is formylated (16), indicating that
formylation is required for binding. As expected, GST alone did
not significantly bind tRNA. In contrast, the variant of the IF2
peptide, which lacks the conserved trypanosomatid-specific
carboxyl-terminal 44 aa, showed a binding activity that was
comparable with the wild-type peptide.

To provide direct evidence that formylation is required for
binding of the elongator tRNAMet, we performed an IF2/tRNA
binding assay using [35S]methionine-labeled mitochondrial
RNA as a substrate. The radioactive mitochondrial RNA frac-
tion was prepared by in organelle aminoacylation. This proce-
dure labels both the unformylated and formylated form of the
imported elongator tRNAsMet (15). After the binding reaction,
the bound and unbound RNA fractions were deacylated, and
the liberated [35S]methionine and 35S-formyl-methionine were
analyzed by TLC. Fig. 2B shows that, as expected, it was
mainly the 35S-formyl-methionine that was recovered in the
pellet fraction representing the bound RNA.

The same binding assays were also performed using isolated
E. coli RNA as a substrate (Fig. 2C). Interestingly, �35% of the
E. coli tRNAMet-i was able to bind to the trypanosomal IF2
peptide, provided that it was aminoacylated. Binding was spe-
cific, as an elongator tRNATyr did not bind. Furthermore, as for
the trypanosomal tRNAMet, the very carboxyl terminus of IF2
(aa 678–721) was dispensable for binding.

In summary, these results show that the carboxyl-terminal
domain of trypanosomal IF2 (aa 412–677) specifically binds

elongator-type tRNAMet of T. brucei, provided that the molecule
is charged and formylated. Furthermore, when the IF2 peptide
was assayed with E. coli RNAs, it specifically recognized the
bacterial tRNAMet-i.

In Vivo Depletion of IF2 by RNAi—Due to the availability of
a tightly controlled tetracycline-inducible expression system
(29), RNAi has become the method of choice to disrupt gene
function in T. brucei (22, 23). Thus, to investigate the function
of IF2 by RNAi, we prepared a construct that contained a
defined sequence of the IF2 gene in the sense, as well as the
antisense, direction. Both sequences were inserted down-
stream of a tetracycline-inducible promoter and were separated
by a stuffer to simplify cloning. In the presence of tetracycline,
the RNA was expressed and formed a stem loop that eventually
led to the specific degradation of the IF2 mRNA. There have
been two types of stuffer sequences used in stem loop con-
structs, one of trypanosomal origin as described previously (22)
and another one of mouse origin (23). Surprisingly, it was
shown that the efficiency of RNAi was generally higher when
the mouse sequence was used.2 The reason for this might be
that the trypanosomal sequence still contains transcription
signals that potentially interfere with the expression of the
double-stranded RNA. We decided to take advantage of this
situation and prepared RNAi strains that could be used for
different purposes. Preparing the RNAi cell line using the
construct containing the mouse stuffer sequence (TbIF2-Mm)
resulted in the growth curve shown in Fig. 3A, which indicated,
as expected, that IF2 is essential for growth of procyclic
T. brucei. With the construct containing the trypanosomal
stuffer (TbIF2-Tb), however, an RNAi cell line having a more
moderate growth phenotype was obtained (Fig. 3B). Analysis of
different clones from the two transfections show that the
growth curves for the two plasmids, which are depicted in Fig.
3, A and B, are typical for the whole population. Thus, we think
that the different growth phenotypes are caused by different
efficiencies of RNAi due to the two stuffer sequences. However,
because no antibodies against trypanosomal IF2 were avail-

FIG. 2. The carboxyl-terminal domain of T. brucei IF2 binds formylated tRNAsMet. A, IF2 binding assays using T. brucei RNA fractions
as substrate. The carboxyl-terminal domain of wild-type (WT) trypanosomal IF2 (aa 412–721) or a variant thereof lacking the 44 last aa (�c-ext)
were expressed as GST fusions. Glutathione-Sepharose beads saturated with the recombinant proteins or with GST alone were incubated with
aminoacylated or deacylated (da) isolated mitochondrial RNA (Mito.), respectively. Identical experiments were also performed using isolated total
RNA (Tot.). Northern blots containing bound (P) and unbound (S) RNA fractions were probed for elongator tRNAMet (e-Met) or tRNALeu (Leu). The
graph shows a quantification of the Northern blots signals as analyzed by a phosphorimaging device. The combined signals of the P and S fractions
were set to 100%. B, IF2 binding assay using the T. brucei [35S]methionine-labeled mitochondrial RNA fraction as substrate. Both supernatant (S)
and pellet (P) fractions were deacylated, and the released [35S]methionine species were analyzed by TLC. The graph shows the tracings of the
[35S]methionine signals from TLC as detected on the monitor of a multichannel analyzer of a gas flow Geiger Müller Counter (15). The positions
of unlabeled methionine (Met) and formyl-methionine (fMet) separated under the same conditions as established in a parallel TLC lane are
indicated. C, IF2 binding assays using total RNA isolated from E. coli as substrate. The same recombinant proteins as in A were tested for binding
of aminoacylated or deacylated (da) E. coli tRNAMet-i (i-Met) and tRNATyr, respectively.
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able, we could not verify this on the protein level.
Previous work from our laboratory has shown that, even

though ablation of MTF resulted in an �80–90% reduction of
formylation activity (16), no growth phenotype was observed
(Fig. 3C). Thus, the residual activity of MTF might still be
sufficient to support growth, or MTF (as in yeast) might indeed
not be required for normal growth (6, 7). The absence of a
growth phenotype in MTF-ablated cells is surprising, because
the enzyme is required for formylation of mitochondrial
tRNAMet, and the tRNAMet can only bind to IF2 in its formy-
lated state (see Figs. 2 and 5). Both MTF and IF2 are therefore
expected to be essential for the mitochondrial translation ini-
tiation pathway in T. brucei. Thus, to demonstrate the in vivo
importance of trypanosomal MTF, we have used the clonal IF2
RNAi cell line (TbIF2-Tb) showing the moderate growth phe-
notype (Fig. 3B) and transfected it with the construct used to
produce the original MTF-RNAi cell line (Fig. 3C) (16). Control
experiments showed that, in induced cells of the resulting
double RNAi knockdown cell line (TbIF2-Tb/TbMTF), IF2
mRNA is degraded, and MTF activity is reduced to the same
level as in the two original cell lines (Fig. 3, B and C). Inter-
estingly, the TbIF2-Tb/TbMTF-RNAi cell line shows a much
stronger growth phenotype (Fig. 3D) than either the TbIF2-Tb-
RNAi cell line (Fig. 3B) it is derived from or the TbMTF-RNAi

cell line alone (Fig. 3C). These results show that, although
reduced MTF activity does not affect growth of wild-type cells,
it will stop growth of cells having reduced concentrations
of IF2.

The growth phenotype observed in IF2 RNAi cells is ex-
pected to be due to the lack of mitochondrial protein synthe-
sis. It is difficult to directly measure mitochondrial transla-
tion in trypanosomatids (30, 31). Thus, as an alternative, we
decided to measure the consequences that ablation of IF2 has
on mitochondrial ATP production (Fig. 4). We have recently
established a sensitive luciferase-based assay to quantify
ATP production in digitonin-isolated mitochondria of T. bru-
cei in response to different substrates (21, 25). There are two
fundamentally different ways by which mitochondria can
produce ATP: (i) by oxidative phosphorylation using the elec-
tron transport chain or (ii) by substrate-level phosphoryla-
tion linked to the citric acid cycle. Our assay allows us to
measure both ATP production pathways separately. To meas-
ure oxidative phosphorylation, mitochondria are incubated
with ADP and the respiratory substrate succinate. This mode
of ATP production is expected to be sensitive to antimycin, an
inhibitor of the bc1 complex. To measure substrate-level
phosphorylation, succinate is replaced by the citric acid cycle
intermediate �-ketoglutarate. Substrate-level phosphoryla-
tion induced by �-ketoglutarate is antimycin-resistant. Thus,
atractyloside, a specific inhibitor of the ADP/ATP transloca-
tor, is used as a control. Atractyloside blocks import of ADP
and therefore will inhibit both substrate-level and oxidative
phosphorylation. The results in Fig. 4 show that ablation of
IF2 selectively knocks down oxidative phosphorylation but
does not interfere with substrate-level phosphorylation. This
is expected, because all mitochondria-encoded proteins in
T. brucei are either components of the respiratory chain or
the mitochondrial translation system. Thus, although oxida-
tive phosphorylation depends on both imported, as well as
mitochondria-encoded proteins, substrate-level phosphoryla-
tion will only require nucleus-encoded components.

Finally, we have used the MTF-RNAi cell line to verify that
only formylated tRNAMet is able to bind to IF2. Mitochondrial
RNA isolated from uninduced and induced cells was incubated
with the glutathione-Sepharose-bound IF2/GST fusion protein.
Fig. 5 shows that, although a fraction of the elongator tRNAMet

present in mitochondrial RNA isolated from uninduced cells
was recovered in the pellet, this amount was reduced to �20%
when the RNA was isolated from MTF-ablated cells. Thus,
these results confirm the ones shown in Fig. 2, A and B, and
provide independent evidence that formylation of the methio-
nyl-tRNAMet is essential for in vitro binding of IF2.

DISCUSSION

The aim of the present study was to elucidate the role
trypanosomal IF2 plays in the mitochondrial translation initi-
ation pathway, in light of the fact that all tRNAs it can use are
imported and of eukaryotic type. Interestingly, T. brucei and
mammalian mitochondria each have only a single type of
tRNAMet. This tRNA is used as an elongator in the unformyl-
ated and as an initiator in the formylated states. However,
although in mammalian mitochondria, the single tRNAMet is of
the initiator-type, sharing features from both bacterial-type
and eukaryotic-type tRNAMet-i (5), the one present in trypano-
somal mitochondria is clearly an elongator (16). The main
fraction of this tRNA actually resides in the cytosol and func-
tions in cytosolic translation elongation (15). Thus, the ques-
tion is how an elongator-type tRNAMet can be recruited to
function in mitochondrial translation initiation. We have re-
cently shown that, in T. brucei, this is achieved by an atypical
MTF, which unlike its counterparts in other organisms, selec-

FIG. 3. Mitochondrial translation initiation is essential for
growth of procyclic T. brucei. A, growth curve of a representative
clonal T. brucei RNAi cell line ablated for IF2. The cell line was obtained
using the stem loop construct containing the mouse stuffer sequence
(TbIF2-Mm). Open and filled squares represent growth in the absence
or presence of tetracycline (Tet), respectively. The inset shows a North-
ern blot for IF2 mRNA; time of sampling is indicated by the arrow. The
rRNAs in the lower panel serve as loading controls. B, same as A, but
the RNAi cell line was obtained using the stem loop construct contain-
ing the trypanosomal stuffer sequence (TbIF2-Tb). C, growth curve of
a representative clonal T. brucei RNAi cell line ablated for MTF
(TbMTF). Same results were obtained for the mouse and the trypano-
somal stuffer sequence. MTF activity was measured by the assay de-
scribed previously (16) and shown to be reduced to �10–20% after three
days of induction. D, growth curve for a representative clonal double
RNAi cell line ablated for IF2 and MTF simultaneously. The cell line
was obtained by transfecting TbIF2-Tb cells with the plasmid used to
create the original MTF cell line (16), except that the resistance marker
was changed. Down-regulation of IF2 mRNA and MTF activity was
shown to be the same as in the corresponding single RNAi cell lines
shown in B and C.
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tively recognizes and formylates elongator tRNAMet (16). In the
present study, we were focusing on IF2, a component of the
mitochondrial translation initiation pathway that acts after
formylation of the tRNAMet. IF2 promotes binding of the formy-
lated tRNAMet to mitochondrial ribosomes. Whether it does so
by acting as a carrier or whether it interacts with the tRNA
already bound to the small subunit of the ribosome is unknown.
Using a homologous in vitro binding assay, we could show that,
as predicted, the carboxyl-terminal domain of trypanosomal
IF2 was able to specifically bind the elongator tRNAMet when
present in a mixture of total mitochondrial RNAs. The fact that
only the elongator tRNAMet in the mitochondrial RNA fraction
was able to bind to IF2 (Fig. 2A), the relative enrichment of
formyl-methionine in the bound RNA fraction (Fig. 2B), and
the much reduced binding that is observed when mitochondrial
RNA of the MTF-RNAi strain is used (Fig. 5) all strongly
suggest that formylation of the methionyl-tRNAMet is a prereq-
uisite for binding to IF2. Furthermore, we showed that, when
incubated with E. coli RNA, trypanosomal IF2 selectively rec-
ognized the heterologous tRNAMet-i (Fig. 2C). Trypanosomal
elongator tRNAMet (16) and E. coli tRNAMet-i (1) have very
different structures; however, both of them are at least in part
formylated, suggesting that the formylated methionine is the
main recognition determinant for the trypanosomal protein.

Similar to the situation in bacteria, formylated tRNAMet-i

has long been known to be the preferred ligand for mitochon-
drial IF2s. However, there is evidence that, to a limited extent,
unformylated tRNAMet-i may be able to bind as well. The extent
to which this can occur depends on the organism. Thus,
whereas in an in vitro binding assay, bovine mitochondrial IF2
showed a strong preference (20–50-fold) for formylated
tRNAMet-i (11), much less specificity (4-fold) is seen when yeast
IF2 is used (9). Furthermore, the fact that a yeast strain de-
leted for MTF did not show a growth phenotype on non-fer-

mentable carbon sources (6, 7) shows that in vivo mitochondrial
translation initiation can also, in principle, occur without
formylated tRNAMet-i. Thus, it appears that the bovine IF2
shows a much stronger preference for formylated tRNAMet-i

than the yeast protein. This makes sense when one considers
that yeast mitochondria have distinct genes for the elongator
and tRNAMet-i, whereas mammalian mitochondria have only a
single one. For mammals, the formyl group is therefore the only
distinguishing feature between the elongator and the initiator
tRNAMet. However, it should be mentioned that a recent study
has shown that the bovine IF2 could replace yeast IF2 in a MTF
deletion strain, indicating that, at least in vivo, it is must bind
unformylated tRNAMet-i (12).

RNAi-mediated ablation of trypanosomal IF2 causes a
growth arrest (Fig. 3A) and a concomitant loss of oxidative
phosphorylation (Fig. 4). This is expected as oxidative phospho-
rylation requires mitochondria-encoded protein and is known
to be essential for procyclic T. brucei. Surprisingly, however,
even though MTF and IF2 are known to act in the same
pathway, growth of a trypanosomal MTF-RNAi knockdown cell
line was not affected (16). How can this be explained? Do we
have the same situation as in yeast, where IF2, under most
growth conditions, can efficiently use unformylated tRNAMet

(6, 7)? We think this is unlikely, because in the in vitro assay,
trypanosomal IF2 showed a strong preference for formylated
tRNAMet. In fact, for unformylated tRNAMet, only a background
level of binding was observed (Fig. 2A). However, RNAi-medi-
ated ablation is known to not completely remove the ablated
gene product. After induction of RNAi in the MTF-RNAi strain,
�10–20% of the MTF activity was retained (16). We therefore
think that the residual amount of formylated tRNAMet is suf-
ficient to support normal growth. If, on the other hand, MTF
activity was ablated in a cell line that already had limited
amounts of IF2 (using the IF2-RNAi cell with the slow growth
phenotype shown in Fig. 3B), a growth arrest was observed.
This indicates that, under these conditions, both components of
the translation initiation pathway, IF2 and MTF, are essential.

Initiation of protein synthesis in E. coli depends strictly on
formylated tRNAMet-i (32), whereas Pseudomonas aeruginosa
is able to use unformylated tRNA (33). Elegant experiments
have shown that translation initiation in E. coli can be ren-
dered formylation-independent by complementing an E. coli
IF2 mutant with the P. aeruginosa IF2 (34). Furthermore, a
single amino acid substitution (H774K) in the IF2 of P. aerugi-
nosa, which introduces the corresponding amino acid found in
the E. coli protein, resulted in a formylation-dependent protein.
Structural modeling suggests that the mutation increases the

FIG. 4. Succinate- and �-ketoglut-
arate-induced mitochondrial ATP
production in the TbIF2-Mm RNAi
cell line. Uninduced cells (�Tet) are
shown on the left, and induced cells
(�Tet) on the right of each panel. The
substrate tested is indicated at the top
and additions of antimycin (antim.) and
atractyloside (atract.) at the bottom of
each panel. ATP productions in mitochon-
dria isolated from uninduced cells tested
without antimycin or atractyloside are set
to 100%. The bars represent means ex-
pressed as percentages from three inde-
pendent inductions. Standard errors are
indicated.

FIG. 5. Mitochondrial tRNAMet from the TbMTF RNAi cell line
does not bind IF2. IF2 binding assays using mitochondrial RNA
(Mito.) isolated from uninduced (�Tet) and induced (�Tet) MTF-RNAi
cells. Northern blots containing bound (P) and unbound (S) RNA frac-
tions were probed for elongator tRNAMet (e-Met) or tRNALeu (Leu).
Quantifications of the signals for elongator tRNAMet in the pellet frac-
tions showed an �5-fold reduction of binding in induced cells.
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positive charge in the aa binding cleft of P. aeruginosa IF2.
Surprisingly, in the T. brucei IF2, the aa corresponding to the
His-774 of the P. aeruginosa protein is an uncharged alanine
and thus reduces the positive charge potential. The T. brucei
protein nevertheless shows great specificity for formylated me-
thionine in vitro, indicating that this position is not the sole
determinant involved in binding specificity.

We have previously shown that, using an elongator-type
tRNAMet in translation initiation, T. brucei mitochondria re-
quires a MTF with a unique substrate specificity (16). In this
study, we showed that, once formylated, the elongator tRNAMet

can bind to a rather conventional trypanosomal IF2 that is also
able to selectively recognize E. coli tRNAMet-i.
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The mitochondrion of Trypanosoma brucei does not encode any
tRNAs. This deficiency is compensated for by the import of a small
fraction of nearly all of its cytosolic tRNAs. Most trypanosomal
aminoacyl-tRNA synthetases are encoded by single-copy genes,
suggesting the use of the same enzyme in the cytosol and mito-
chondrion. However, the T. brucei genome contains two distinct
genes for eukaryotic tryptophanyl-tRNA synthetase (TrpRS). RNA
interference analysis established that both TrpRS1 and TrpRS2 are
essential for growth and required for cytosolic and mitochondrial
tryptophanyl-tRNA formation, respectively. Decoding the mito-
chondrial tryptophan codon UGA requires mitochondria-specific
C3U RNA editing in the anticodon of the imported tRNATrp. In vitro
charging assays with recombinant TrpRS enzymes demonstrated
that the edited anticodon and the mitochondria-specific thiolation
of U33 in the imported tRNATrp act as antideterminants for the
cytosolic TrpRS1. The existence of two TrpRS enzymes, therefore,
can be explained by the need for a mitochondrial synthetase with
extended substrate specificity to achieve aminoacylation of the
imported thiolated and edited tRNATrp. Thus, the notion that, in an
organism, all nuclear-encoded tRNAs assigned to a given amino
acid are charged by a single aminoacyl-tRNA synthetase, is not
universally valid.

genetic code � mitochondria � RNA editing � aminoacyl-tRNA synthetase

In animal and most fungal mitochondria, the total set of tRNAs
required for translation is encoded in the mitochondrial genome

and, therefore, of bacterial evolutionary origin. The aminoacyl-
tRNA synthetases (aaRSs) responsible for charging of mitochon-
drial tRNAs always are nuclear-encoded and, therefore, need to be
imported into mitochondria (1). However, their evolutionary origin,
just as the one of their substrate tRNAs, is in most cases bacterial.
Thus eukaryotes, if we exclude all plastid-containing organisms,
generally have two sets of aaRSs, one for cytosolic and a second one
for mitochondrial aminoacyl-tRNA synthesis. In most eukaryotes,
however, there are a few aaRSs that are targeted to both the cytosol
and the mitochondria, indicating that the two sets of enzymes
overlap to a limited extent (2).

Most mitochondrial genetic systems show deviations from the
universal genetic code. The most common one is a reassignment of
the termination codon UGA to tryptophan (3). Thus, to decode the
UGA tryptophan codon, mitochondria require a nonstandard
tRNATrp carrying a UCA instead of CCA anticodon. Cytosolic
tRNATrp

CCA is aminoacylated by a eukaryotic tryptophanyl-tRNA
synthetase (TrpRS) (4), whereas the mitochondrial-encoded
tRNATrp

UCA is charged by a bacterial-type TrpRS (5). The CCA
anticodon is a known identity element for both enzymes (6–8). It
is clear, however, that the bacterial-type enzyme in mitochondria
must be able to tolerate an UCA anticodon (5).

In contrast to animals and most fungi, mitochondria from
protozoa and plants generally lack a variable number of mito-
chondrial tRNA genes. In these cases, the missing tRNAs are
replaced by import of a small fraction of the corresponding
nuclear-encoded cytosolic tRNAs (9). As a consequence, the

imported tRNAs are always of a eukaryotic evolutionary origin.
An intriguing situation is found in trypanosomatids, e.g.,
Trypanosoma brucei and Leishmania spp., which have lost all
mitochondrial tRNA genes (10–12). Their mitochondrial trans-
lation system therefore must function exclusively with imported
eukaryotic-type tRNAs.

Trypanosomatid mitochondria use UGA as tryptophan codon.
However, the only tRNATrp gene in T. brucei is nuclear and carries
the standard tryptophan anticodon CCA. Recent work in Leish-
mania revealed that trypanosomatids use RNA editing to convert
the CCA anticodon of �40% of the imported tRNATrp to UCA; the
resulting tRNA now is able to recognize UGA codons (13). Besides
RNA editing, the imported tRNATrp is subjected to additional
mitochondria-specific modifications; most importantly, the thiola-
tion of U33, the ‘‘universally unmodified’’ uridine in all known
tRNAs (14). tRNA editing is not required for thiolation of U33 but
it is possible that the modification is needed for editing. In any case,
the close proximity of the thiolated U33 to the anticodon suggests
that it influences decoding.

Cytosolic and mitochondrial tRNAs of trypanosomatids orig-
inate from the same set of nuclear genes. Therefore, it is
reasonable to assume that the same aaRSs are used in the cytosol
and in mitochondria. This assumption is supported by the fact
that in T. brucei, most aaRSs are represented by single genes only
(15). Furthermore a dual localization in the cytosol and in
mitochondria has been shown for T. brucei glutaminyl-tRNA
synthetase and the glutamyl-tRNA synthetase (16). The im-
ported trypanosomal tRNATrp, however, represents a special
case, because its anticodon loop, due to the editing event and the
thiolation of U33, differs from its cytosolic counterpart (14).
This situation raises the question of how cytosolic and mito-
chondrial tryptophanyl-tRNA species are formed in T. brucei?
Here we show that unlike most other trypanosomal tRNAs,
because of the mitochondrial use of UGA as tryptophan codon,
cytosolic and mitochondrial aminoacylation of tRNATrp requires
two distinct eukaryotic-type TrpRSs.

Results
The T. brucei Genome Encodes Two Eukaryotic TrpRSs. In the genome
of Saccharomyces cerevisiae, probably the best characterized eu-
karyote, we find annotated genes for 36 different aaRSs (www.
yeastgenome.org). These enzymes can be divided into 16 cytosol-
specific ones, 14 of which are specific for mitochondria, and four are
known to be doubly targeted to the cytosol and the mitochondria
(these numbers are still, in part, based on predictions and, therefore,
represent approximations). It is striking to compare yeast with T.
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brucei, whose genome encodes only 23 annotated aaRSs (15). This
low number makes sense because the tRNAs in the cytosol and
mitochondria derive from the same nuclear genes (10); it therefore
can be expected that the same aaRSs are used in both compart-
ments. Nevertheless, two distinct genes are found for aspartyl-
tRNA synthetase, lysyl-tRNA synthetase, and TrpRS. Further-
more, in each case, one of the two proteins is predicted to have a
mitochondrial targeting sequence. It is not obvious why T. brucei
should have two aspartyl- or lysyl-tRNA synthetases, because the
corresponding cytosolic and mitochondrial substrate tRNAs de-
rived from the same nuclear genes. However, the need for two
distinct TrpRSs might be explained by the fact that because of
editing in the mitochondrion, cytosolic and mitochondrial tRNATrp

differ in an anticodon nucleotide (13). In this study, we focus on the
functional analysis of Tb-TrpRS1 and Tb-TrpRS2, the two trypano-
somal TrpRS homologues. The two proteins are 41% identical,
phylogenetic analysis shows that both are of the eukaryotic type,
and Tb-TrpRS2 contains a predicted 50-aa mitochondrial prese-
quence (Fig. 1). Tb-TrpRS1 shares 48–53% sequence identity to
eukaryotic TrpRSs, whereas Tb-TrpRS2 is more diverged, showing
an identity to other eukaryotic TrpRSs of only 39–41%. Interest-
ingly, essentially the same situation is found in Leishmania (17). The

two leishmanial proteins Lm-TrpRS1 and Lm-TrpRS2 are 76%
and 59% identical to their trypanosomal counterparts.

Intracellular Localization of Tb-TrpRS1 and Tb-TrpRS2. Tb-TrpRS2 is
predicted to have a mitochondrial targeting signal. However, in
T. brucei, such predictions are difficult because mitochondrial
presequences can be very short (18). Thus, to determine the
localization of the two enzymes, we prepared transgenic cell
lines, allowing inducible expression of Tb-TrpRS1 and Tb-
TrpRS2 versions carrying the 10-aa-long Ty1-peptide as epitope
tags at their carboxyl termini (19). Immunofluorescence analysis
by using an anti Ty1-antibody showed a tetracycline-inducible
diffuse staining of the tagged Tb-TrpRS1, consistent with a
cytosolic localization (Fig. 2A Top and Center). For tagged
Tb-TrpRS2, on the other hand, a staining identical to the one
seen with the mitochondrial marker was obtained (Fig. 2 A
Bottom). Furthermore, the two transgenic cell lines were sub-
jected to a biochemical analysis that showed that the tagged
Tb-TrpRS1 copurifies with the cytosolic marker, whereas the
tagged Tb-TrpRS2 together with the mitochondrial marker is
recovered in the pellet (Fig. 2B). These results are consistent
with the immunofluorescence analysis and show that the two
TrpRSs have a nonoverlapping intracellular distribution: Tb-
TrpRS1 is exclusively cytosolic and Tb-TrpRS2 is exclusively
mitochondrially localized.

RNA Interference (RNAi)-Mediated Ablation of Tb-TrpRS1 and Tb-
TrpRS2. To determine the function of Tb-TrpRS1 and Tb-TrpRS2,
we established two stable transgenic cell lines, which allow tetra-

Fig. 1. T. brucei contains two eukaryotic TrpRSs. (A) Multiple sequence
alignment of the cytosolic TrpRS from S. cerevisiae (ScWRS1) and the two T.
brucei orthologues (Tb-TrpRS1 and Tb-TrpRS2). The sequences were aligned
by using the CLUSTAL W program with default parameters. Strictly conserved
residues and conservative replacements are shown in black and gray boxes,
respectively. (B) Position of the two trypanosomal enzymes Tb-TrpRS1 (Tb1)
and Tb-TrpRS2 (Tb2) in a phylogenetic tree based on a multiple sequence
alignment of the cytosolic TrpRS from mouse [Mus musculus (Mm)], Drosoph-
ila melanogaster (Dm), and yeast [S. cerevisiae (Sc)]; the mitochondrial enzyme
of yeast (Sc mito) and mouse (Mm mito); and, indicated by gray letters, the
TrpRS from the bacteria Corynebacterium glutamicum (Cg), Bacillus subtilis
(Bs), and E. coli (Ec). The tree was constructed by using TREEVIEW, which is
available on http:��taxonomy.zoology.gla.ac.uk�rod�treeview.html.

Fig. 2. Localization of trypanosomal TrpRSs. (A Top and Center) Double
immunofluorescence analysis of a T. brucei cell line expressing Tb-TrpRS1
carrying the Ty1 tag at its carboxyl terminus under the control of the tetra-
cycline-inducible (�Tet and �Tet) procyclin promoter. The cells were stained
for DNA by using DAPI, for a subunit of the ATPase, serving as a mitochondrial
marker and with a monoclonal antibody recognizing the Ty1-Tag. (A Bottom)
Same as Top and Center, but a cell line expressing carboxyl-terminally Ty1-
tagged Tb-TrpRS2 was analyzed. (Scale bars: 10 �m.) (B) Immunoblot analysis
of total cellular (T), crude cytosolic (C), and crude mitochondrial extracts (M)
for the presence of the Ty1-tagged Tb-TrpRS1 and Tb-TrpRS2, respectively.
Elongation factor 1a (EF-1a) served as a cytosolic and �-ketoglutarate dehy-
drogenase (KDH) as a mitochondrial marker.
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cycline-inducible ablation of each of the two enzymes. The North-
ern blot insets in Fig. 3 A and B show that induction of RNAi in
these two cell lines leads to specific degradation of the correspond-
ing Tb-TrpRS mRNAs. Most importantly, concomitant with the
depletion of the mRNAs, a growth arrest is observed 2 (for
Tb-TrpRS1) and 3 days (for Tb-TrpRS2) after the addition of
tetracycline (Fig. 3 A and B). Thus, Tb-TrpRS1 and Tb-TrpRS2 are
both essential for growth of insect stage T. brucei.

To determine the biochemical phenotype of the two RNAi cell
lines, we isolated total and mitochondrial RNA from untreated
cells and from cells grown in the presence of tetracycline.
Subsequently, the RNAs were resolved on long acid urea poly-
acrylamide gels (20), followed by Northern blot analysis, to
determine the ratio of uncharged tRNATrp to tryptophanyl-

tRNAsTrp (Fig. 3 C and D). The results in Fig. 3C Left show that
ablation of Tb-TrpRS1 results in the accumulation of uncharged
cytosolic tRNATrp. Interestingly, in measurements of the levels
of tryptophanyl-tRNATrp in the induced Tb-TrpRS2 cell line, the
converse result was obtained, and a selective accumulation of
deacylated mitochondrial tRNATrp was observed (Fig. 3D Right).
As expected, ablation of either TrpRS had no influence on the
aminoacylation levels of cytosolic tRNALeu or mitochondrial
tRNATyr. These results show that, in agreement with its exclusive
cytosolic localization, Tb-TrpRS1 is responsible for aminoacy-
lation of the cytosolic tRNATrp. On the other hand Tb-TrpRS2,
in line with its mitochondrial localization, is required for charg-
ing of imported mitochondrial tRNATrp.

Ablation of Tb-TrpRS2 abolishes mitochondrial protein syn-
thesis and, consequently, is expected to interfere with oxidative
phosphorylation (OXPHOS). Mitochondria produce ATP, by
OXPHOS and by substrate level phosphorylation linked to the
citric acid cycle. We recently established an assay that allows
quantitation of both modes of ATP production in isolated T.
brucei mitochondria (21, 22). To measure antimycin-sensitive
OXPHOS, mitochondria are incubated with ADP and succinate.
�-ketoglutarate is used in the determination of the antimycin-
resistant substrate level phosphorylation, whereas atractyloside
treatment that prevents mitochondrial import of the added ADP
is the control. The results in Fig. 4 show that ablation of
Tb-TrpRS2 selectively knocks down OXPHOS that, in part,
depends on mitochondrial-encoded proteins but does not inter-
fere with substrate level phosphorylation, which depends solely
on nuclear encoded proteins.

Substrate Specificities of Tb-TrpRS1 and Tb-TrpRS2. Recent work in
Leishmania (14) showed that the imported tRNATrp is present in
two main forms: (i) the tRNATrp

CCA carrying a mitochondria-
specific methylation on the C34 and (ii) the tRNATrp

UCA in which
the methylated C34 has been edited to a methylated U and which
also contains a mitochondria-specific thiolated U33. Furthermore,
it was shown that both tRNATrp forms contain a mitochondria-
specific methylation on the �32 (Fig. 5A). Fig. 5B shows that in T.
brucei �85% of the imported tRNATrp is thiolated. Furthermore,
RT-PCR analysis by using cytosolic and mitochondrial RNA as
substrates demonstrates that �40% of mitochondrial tRNATrp is
edited (Fig. 5C). Thus, in contrast to Leishmania, where all thio-
lated tRNATrp is edited (14), there is a population of T. brucei
tRNATrp, which is thiolated but not edited.

To test their substrate specificities, recombinant proteins of

Fig. 3. Tb-TrpRS1 and Tb-TrpRS2 are essential for the growth of procyclic T.
brucei and are responsible for formation of tryptophanyl-tRNA in the cytosol
and the mitochondria, respectively (A) Growth curve in the presence and
absence of tetracycline (�Tet and �Tet) of a representative clonal T. brucei
RNAi cell line ablated for Tb-TrpRS1. (A Inset) A Northern blot for Tb-TrpRS1
mRNA. The time of sampling is indicated by the arrow. The rRNAs in the lower
panel serve as loading controls. (B) Same as A for an RNAi cell line ablated for
Tb-TrpRS2. (C) Northern blot analysis of total and mitochondrial RNA isolated
under acidic conditions from the Tb-TrpRS1 RNAi cell line. The total RNA
fraction only contains �5% of mitochondrial RNA and, thus, essentially rep-
resents cytosolic RNA. Days of induction (0 and 3) by tetracycline are indicated
at the bottom. The blots were probed for the T. brucei tRNATrp as well as
tRNALeu and tRNATyr, which serve as controls not affected by the RNAi. The
RNA fractions were resolved on long acid urea gels, which allow separation of
aminoacylated from deacylated tRNAs. The bar graph shows the quantifica-
tion of the results. Relative amounts of aminoacylated tRNAs are indicated for
the tRNATrp and the controls (tRNALeu and tRNATyr), respectively. For each lane,
the sum of aminoacylated and deacylated tRNA was set to 100%. (D) Same as
C, but analysis was done for the Tb-TrpRS2 RNAi cell line.

Fig. 4. Ablation of Tb-TrpRS2 selectively abolishes OXPHOS. Succinate and
�-ketoglutarate mitochondrial ATP production in crude mitochondrial frac-
tions of the Tb-TrpRS2 RNAi cell line. Uninduced cells (�Tet) are shown on the
left, and induced cells (�Tet) are shown on the right of the graphs. The
substrate tested is indicated at the top, and additions of antimycin (antim.)
and atractyloside (atract.) are indicated at the bottom. ATP productions in
mitochondria isolated from uninduced cells tested without antimycin or
atractyloside are set to 100%. The bars represent means expressed as percent-
ages from three or more independent inductions. SEs are indicated.
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Tb-TrpRS1 and Tb-TrpRS2 were overexpressed in Escherichia coli
and purified to �95% homogeneity. In vitro charging assays showed
that although neither enzyme was able to recognize in vitro tran-
scripts corresponding to unedited or edited tRNATrp (data not
shown), both efficiently aminoacylated isolated T. brucei cytosolic
tRNA (Fig. 5D Left). Thus, the cytosolic unedited tRNATrp

CCA can
be charged with very similar efficiencies by both the cytosolic and
the mitochondrial enzyme. Interestingly, however, when using
isolated mitochondrial tRNAs as a substrate, the level of amino-
acylation achieved by the cytosolic Tb-TrpRS1 dropped to 19% of
that obtained with the mitochondrial enzyme (Fig. 5D Center
Right). This fraction correlates with the level of nonthiolated
mitochondrial tRNATrp (Fig. 5B), suggesting that, in contrast to
mitochondrial Tb-TrpRS2, Tb-TrpRS1 is not able to charge thio-
lated tRNATrp. Fig. 5B shows that hydrogen peroxide treatment
produces a mitochondrial tRNATrp population in which only 15%
(instead of 85%) of the molecules contain thiolated U33. Interest-
ingly, the H2O2-treated mitochondrial tRNA fraction can be
charged by cytosolic Tb-TrpRS1 to a level that corresponds to
�40% of the one observed with the mitochondrial enzyme (Fig. 5D
Right). However, the reactivity of either enzyme did not change
when tested with H2O2-treated cytosolic tRNAs, which do not
contain thiolated tRNATrp (Fig. 5D Center Left). Thus, removing
the thio group converts a population of mitochondrial tRNATrp into
a substrate for the cytosolic Tb-TrpRS1. Interestingly, even in the
absence of thiolated U33, �60% of the mitochondrial tRNATrp

remained refractory to aminoacylation by the cytosolic enzyme.
The uncharged fraction represents �50% of the thiolated U33
lacking tRNATrp population and, thus, is similar to the �40%
observed for the edited population. Therefore, the most parsimo-
nious explanation of these results is that the edited U34, just as the
thiolated U33, both act as independent antideterminants for cyto-
solic Tb-TrpRS1. To confirm the charging results presented above,
we expressed the T. brucei tRNATrp

UCA and tRNATrp
CCA genes in

E. coli and isolated total tRNA. Aminoacylation of these tRNA
samples with the two TrpRSs demonstrated (Fig. 5E) that the
mitochondrial Tb-TrpRS2 enzyme charged both tRNATrp isoac-
ceptors, whereas the cytosolic Tb-TrpRS1 acylated only
tRNATrp

CCA. Neither enzyme charged E. coli tRNA. Thus, Tb-
TrpRS2 efficiently aminoacylates the unedited and edited fraction
of mitochondrial tRNATrp. Furthermore, the in vivo aminoacylation
level of total mitochondrial tRNATrp was shown to be close to 80%
(Fig. 3D). These results suggest that both isoacceptors are used in
mitochondrial protein synthesis, the unedited tRNATrp being re-
stricted to decode the standard UGG tryptophan codons.

Our current understanding of the structure of eukaryotic
TrpRS does not allow a prediction of the anticodon binding sites
that might explain the different tRNA recognition properties.
Based on structural modeling of human TrpRS (D. Kennedy and
W. Yin, unpublished data), the putative anticodon-binding
domain of Tb-TrpRS1 extends from G270-F373. The sequences
of the two Tb-TrpRSs are quite different in this region; they
share only 30% amino acid identity.

Discussion
One of the few generalizations about mitochondrial tRNA
import states that only a small fraction of a given nuclear
encoded tRNA is imported and that the remainder functions in
cytosolic translation (9). Thus, in all organisms, imported tRNAs
are always of the eukaryotic type. Mitochondrial translation,
however, is of a bacterial evolutionary origin. tRNA import,
therefore, can be considered as a horizontal gene product
transfer between the eukaryotic and bacterial domains. There
are some fundamental differences between eukaryotic and
bacterial-type translation systems that, for some tRNAs, are
expected to prevent the dual use in the cytosol and in mitochon-
dria. One such difference is necessitated by mitochondrial
variants of the genetic code. The most frequent code deviation

Fig. 5. Tb-TrpRS1 and Tb-TrpRS2 have distinct substrate specificities. (A) Mito-
chondrial editing and modification events of the anticodon loop of the tRNATrp

as described for Leishmania (14). The percentages of the thiolated U (s2U) and the
C3U editing as determined for T. brucei tRNATrp are indicated. (B Left) The
percentage of thiomodified mitochondrial tRNATrp of T. brucei was measured by
N-acryloylaminophenylmercuric chloride gel electrophoresis (33) and Northern
blot hybridization. The shifted band represents thiolated tRNATrp(S2U). (B Right)
Thefractionofthiolatedmitochondrial tRNATrp thatremainsthiolatedafterH2O2

treatment was determined as in the left lane. (C) Quantitative RT-PCR assay for
edited tRNATrp. (C Upper) The cytosolic and mitochondrial tRNA fractions that
were used as templates are free of DNA. (C Lower) The blot shows that RNA
editing can be analyzed by a restriction digest because it destroys a HinfI site that
is present in the cDNA derived from the unedited tRNATrp (14). Introduction of a
synthetic HinfI plus 20 flanking nucleotides at the 5� end of the 5� RT-PCR primer
provides an internal control for the HinfI digestion, allowing the quantitative
determination of RNA editing. cDNA amplified from unedited tRNATrp contains
two HinfI sites and, thus, will be digested into three fragments (46, 22, and 21 nt;
unedited).ThecDNAderivedfromeditedtRNATrp contains thesyntheticHinfI site
only and will be digested into two fragments (68 and 21 nt; edited). Measuring
the intensities of the diagnostic bands for nonedited (46 nt) and edited (68 nt)
tRNATrp allows,aftercorrectingfor theirdifferentmolecularmass,determination
of the fraction of edited tRNATrp in T. brucei mitochondria. (D) In vitro amino-
acylation assays by using [3H]tryptophan and recombinant Tb-TrpRS1 as well as
Tb-TrpRS2 as enzymes. (Left and Center Left) Untreated and H2O2-treated cyto-
solic tRNA were charged. (Right and Center Right) Same as Left and Center Left
but with untreated and H2O2-treated mitochondrial tRNAs. For each graph, the
tRNA charged by the Tb-TrpRS2 was set to 100%. The percentage of mitochon-
drial tRNATrp that is thiolated in the untreated and treated fractions is indicated
on the right. The means and SE for three independent experiments are shown for
aminoacylation of untreated tRNAs. For experiments using H2O2-treated tRNAs,
the mean of two experiments is shown. The two values each for cytosolic and
mitochondrial tRNAs varied by 20% and 10%, respectively. (E) Aminoacylation of
T. brucei tRNATrp overexpressed in E. coli by using 200 nM enzyme and 0.25 �g��l
tRNA. (Right) Tb-TrpRS1 charging of total E. coli tRNA with T. brucei tRNATrp

UCA

overexpressed (■ ), total E. coli tRNA with T. brucei tRNATrp
CCA overexpressed (}),

and total E. coli tRNA (Œ). (Left) Tb-TrpRS2 charging of total E. coli tRNA with T.
brucei tRNATrp

UCA overexpressed (■ ), total E. coli tRNA with T. brucei tRNATrp
CCA

overexpressed (}), and total E. coli tRNA (Œ).
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is the reassignment of the stop codon UGA to tryptophan (3).
Reading this reassigned codon requires a tRNATrp with a UCA
anticodon. Simultaneous use of this tRNA in the cytosol and in
mitochondria, however, is not possible because it would act as a
nonsense suppressor in the cytosol. In line with this constraint,
it was recently shown that in most organisms that import tRNAs
the mitochondrial tRNATrp gene has been retained (23). Thus,
it is unexpected that trypanosomatids import the tRNATrp. The
way Leishmania mitochondria accommodate the change in the
genetic code is by mitochondria-specific C3U editing of the first
anticodon position of the imported tRNATrp (13). In the present
work, we have analyzed the situation in the closely related T.
brucei and shown that although editing of the imported tRNATrp

is necessary, it is not sufficient to allow decoding of the mito-
chondrial UGA codons. The problem that arises is that the
mitochondrially localized tRNATrp cannot be aminoacylated by
the standard eukaryotic-type TrpRS (Tb-TrpRS1). In contrast to
most other trypanosomal aaRSs, which have dual location and
are used to charge cytosolic and imported tRNAs (16), Tb-
TrpRS1 is exclusively found in the cytosol. A survey of the
genome showed that T. brucei has a second TrpRS (Tb-TrpRS2)
that is related to the cytosolic Tb-TrpRS1 but is localized
exclusively in mitochondria. This enzyme has an extended sub-
strate specificity and aminoacylates in vitro both cytosolic and
mitochondrial tRNATrp. Further studies showed that both the
thio-modified U33 and the C3U editing of the first nucleotide
in the anticodon prevent mitochondrial tRNATrp to be recog-
nized by the cytosolic Tb-TrpRS1. The function of the thiolated
U33 in mitochondrial tRNATrp of trypanosomatids is unknown
(14). However, the fact that it is localized immediately 5� of the
first position of the anticodon suggests that it influences the
decoding properties of the tRNATrp or that it even may be
required for tRNA editing. In most systems, the reassignment of
the UGA codon is accommodated by a single mutation in the
mitochondrial tRNATrp gene, which probably requires an adap-
tation of the mitochondrial TrpRS (3). The situation is different
for mitochondria of trypanosomatids because they need (i) a
mitochondria-specific tRNA editing enzyme that produces the
tRNATrp

UCA (13) and (ii) a separate TrpRS (Tb-TrpRS2) with
an extended substrate specificity. The need for a record TrpRS
is due to the fact that the C3U editing not only changes the
decoding properties of the tRNATrp but also its identity toward
the classic TrpRS (Tb-TrpRS1). Thus, recoding of UGA to
tryptophan appears to be more costly for trypanosomatids than
for other organisms.

Doubly targeted aaRSs, which are able to aminoacylate both
nuclear-encoded tRNAs in the cytosol and the corresponding
mitochondrial encoded tRNAs, are found in most, if not all,
eukaryotes (2). In this study, we describe the converse situation
in that tRNAs derived from the same nuclear gene require two
distinct aaRSs for proper function. Thus, the presence of a single
modification, be it the thio group on the U33 or the C3U editing
of the anticodon, is sufficient to prevent aminoacylation by
Tb-TrpRS1. Our results show that the notion that in an organism
all nuclear-encoded tRNA isoacceptors for a given amino acid
are charged by a single aaRS (4) is not universally valid.

The anticodon and the discriminator nucleotide are the major
identity elements for TrpRS (6, 7). Whereas the anticodon is a
phylogenetically shared identity element, the discriminator nucle-
otide differs between bacteria and eukaryotes (6), which explains
why the two TrpRSs cannot efficiently cross-aminoacylate the
corresponding tRNATrp species (24, 25). Most mitochondria de-
code UGA as tryptophan, thus it is clear that the bacterial-type
mitochondrial TrpRS has evolved to tolerate an UCA anticodon (3,
5). Interestingly, the same applies for the eukaryotic mitochondria-
localized Tb-TrpRS2 in T. brucei because, unlike the cytosolic
Tb-TrpRS1, it is able to charge eukaryotic tRNATrp carrying an
UCA anticodon. Thus, the existence of both bacterial and eukary-

otic TrpRSs that are able to charge mitochondrial tRNATrp carrying
the nonstandard UCA anticodon is a result of convergent evolution.
Whether bacterial or eukaryotic TrpRS is used inside mitochondria
might be determined to a great extent by the discriminator nucle-
otide on the corresponding tRNATrp and, therefore, depends on
whether the tRNATrp is encoded in the mitochondrial DNA or
imported from the cytosol.

Thus Tb-TrpRS2 represents an adaptation to the fact that the
trypanosomal mitochondrial translation system has to function
with eukaryotic-type tRNAs. Another adaptation of the same
kind is the unusual T. brucei methionyl-tRNAMet formyltrans-
ferase (MTF), which because of the absence of a bacterial-type
initiator tRNAMet, has to formylate the only tRNAMet present in
mitochondria, which is the imported elongator tRNAMet (26, 27).
To perform their function, the trypanosomal MTF and the
Tb-TrpRS2 had to develop a substrate specificity that is distinct
from their orthologues. Trypanosomal MTF completely
switched its specificity and exclusively formylates elongator
tRNAMet, unlike all other MTFs, which only recognize bacterial-
type initiator tRNAsMet. In the case of Tb-TrpRS2, the enzyme
still recognizes the standard substrate for eukaryotic TrpRS, the
tRNATrp

CCA, but has extended its substrate specificity to
tRNAsTrp carrying a thiolated U33 and an UCA anticodon.

Studies of the adaptations of mitochondrial translation factors
that interact directly with tRNAs (e.g., aaRSs, initiation factor 2
(28), or elongation factor Tu) to imported eukaryotic tRNAs
should yield additional surprises and reveal more fundamental
requirements of translation.

Materials and Methods
Cells. Procyclic T. brucei, strain 29-13 (29) was grown in SDM-79,
supplemented with 15% FCS�25 �g/ml hygromycin�15 �g/ml
G-418 at 27°C, and harvested at 1.5–3.5 � 107 cells per ml.

Production of Transgenic Cell Lines. As a tag to localize Tb-TrpRS1
(accession no. Tb927.3.5580) and Tb-TrpRS2 (accession no.
Tb927.8.2240), we used a 10-aa epitope of the major structural
protein of yeast Ty1, which is recognized by the monoclonal
antibody BB2 (19). The sequences corresponding to the carbox-
yl-terminal Ty1-tagged Tb-TrpRS1 and Tb-TrpRS2 were cloned
into a derivative of pLew-100 to allow tetracycline-inducible
expression of the tagged proteins (29).

RNAi of Tb-TrpRS1 and Tb-TrpRS2 was performed by using
stem loop constructs containing the puromycin resistance gene
(22). As inserts, we used a 537-bp fragment (nucleotides 4–540)
of the Tb-TrpRS1 gene and a 537-bp fragment (nucleotides
4–540) of the Tb-TrpRS2 gene.

Transfection of T. brucei and selection with antibiotics, clon-
ing, and induction with tetracycline were done as described in
ref. 30.

Cell Fractionation by Digitonin. Fractionation of Ty1 epitope-
tagged Tb-TrpRS1- and Tb-TrpRS2-expressing cells was done by
digitonin extraction. Washed T. brucei cells (108 cells) were
resuspended in 0.5 ml of SoTE (0.6 M sorbitol�20 mM Tris�HCl,
pH 8�2 mM EDTA). After the addition of 0.5 ml of SoTE
containing 0.03% (wt�vol) of digitonin, the samples were mixed
by pipetting and incubated on ice for 5 min. The suspensions
were centrifuged at 6,800 � g for 5 min at 4°C, resulting in a pellet
that corresponds to a crude mitochondrial fraction and a super-
natant faction. The latter was cleared by centrifugation (10 min
at 21,000 � g at 4°C), yielding a crude cytosolic fraction. Finally,
0.3 � 107 cell equivalents each of total protein extract, crude
cytosolic, and crude mitochondrial fractions were separated by
SDS-gel electrophoresis and analyzed by immunoblotting.

Analysis of in Vivo Aminoacylation. Mitochondria from uninduced
and induced Tb-TrpRS1 and Tb-TrpRS2 RNAi cell lines were
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isolated by digitonin extraction and subsequent RNase treatment as
described to yield a crude mitochondrial fraction that is essentially
free of cytosolic RNAs (10). RNA was isolated from the crude
mitochondrial fractions as well as uninduced and induced total cells
by using the acid guanidinium isothiocyanate procedure (31), which
allows isolation of charged tRNA. Then charged tRNA was sepa-
rated from free tRNA on acid urea polyacrylamide gels as described
in ref. 20 and visualized by Northern blot hybridization with labeled
oligonucleotides (tRNATrp, TGAGGACTGCAGGGATTG;
tRNALeu

CAG, CCTCCGGAGAGATGACGA; tRNATyr
GUA, TG-

GTCCTTCCGGCCGGAATCGAA).

Cloning, Overexpression, and Purification of Tb-TrpRS1 and Tb-TrpRS2.
The gene sequences were PCR-amplified by using the Expand
High Fidelity PCR System (Roche Applied Science). Tb-TrpRS1
was cloned into NcoI�XhoI in pET20b (Novagen) with a C-
terminal His tag. For Tb-TrpRS2, the N-terminal 21 amino acids
(mitochondrial leader sequence) were omitted, and the sequence
was cloned into the NdeI�XhoI in pET15b (Novagen). After
sequence verification, the resulting plasmids were transformed
into E. coli Bl-21-CodonPlus(DE3)-RIL cells (Stratagene).

Cells were grown at 37°C in LB medium supplemented with
ampicillin (100 �g�ml) and chloramphenicol (34 �g�ml), and
protein expression was autoinduced by using the Overnight
Express Autoinduction System (Novagen) according to the
manufacturer’s instructions. After harvest, the cells were soni-
cated, and the proteins were purified by Ni-NTA chromatogra-
phy (Qiagen, Valencia, CA). The desired fractions were pooled,
dialyzed against 50 mM Na2HPO4, pH 8.0�5 mM 2-mercapto-
ethanol�50% glycerol, and stored at �20°.

In Vitro Aminoacylation Assays. (i) Using native tRNA. Mitochondria
were prepared by hypotonic lysis and Percoll gradient centrifu-
gation as described in ref. 32. The supernatant obtained after the
initial lysis was used to isolate cytosolic RNAs by repeated
phenol extractions and ethanol precipitations. Mitochondrial
RNA was isolated from gradient purified mitoplasts by the acid
guanidinium isothiocyanate procedure (31). A cumulative 25-
liter T. brucei culture yielded 6 mg of mitochondrial RNA. Total

and mitochondrial RNA were deacylated in 0.3 M Tris�HCl (pH
9.0) at 30°C for 1 h. Finally, tRNAs were isolated from both
fractions by using Qiagen-Tip columns as described in ref. 16.
The percentage yield of tRNAs from deacylated total and
mitochondrial RNAs was �5%. H2O2 treatment of mitochon-
drial and total tRNA was done at 0.2 mg�ml by using 0.21%
(wt�vol) of H2O2 in 10 mM Tris�HCl (pH 7.5) for 20 h at 20°C.
The reaction was stopped by adding 2-mercaptoethanol to 50
mM, and tRNAs were purified by ethanol precipitation. The
presence and absence of thiolated U33 was monitored by using
8 M urea�10% polyacrylamide gels containing a 25 mM con-
centration of N-acryloylaminophenylmercuric chloride (33).

In vitro aminoacylation assay were performed in 50 mM
Hepes, pH 7.0�10 mM Mg-acetate�2 mM ATP�4 mM DTT�
0.05% (wt/vol) BSA, and a mixture of 38 �M cold and 2 �M
[3H]tryptophan (32 Ci�mmol; 1 Ci � 37 GBq). The enzyme and
tRNA concentrations used were as follows: 400 nM recombinant
Tb-TrpRS1 or Tb-TrpRS2 and 1 mg�ml isolated total or mito-
chondrial tRNA as substrates. Incubation was for 10 min at 37°C,
and Trp-tRNA was determined as described in ref. 34.
(ii) Using E. coli tRNA in which T. brucei tRNATrp

UCA and tRNATrp
CCA were

overexpressed. Reactions were carried out as described above with
the following modifications: 75.5 �M cold and 4.5 �M [3H]tryp-
tophan (32 Ci/mmol)�200 nM TrpRS�0.25 mg/ml tRNA.

Miscellaneous. Northern blots of tRNAs and ATP production
assays were done as described in refs. 10 and 22. For the RT-PCR
to amplify cDNA of cytosolic and mitochondrial tRNATrp, the
oligonucleotides used were as follows: forward primer
(AGAGAGAGCGAGGAAGGCGAGATTCTCAGTGGT-
AGAGCATTGG, containing a synthetic HinfI site) and reverse
primer (TGGTGAGGACTGCAGGGATTG).
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Trypanosomatids are important human 
pathogens that form a basal branch of 
eukaryotes. Their evolutionary history is still 
unclear, as are many aspects of their 
molecular biology. Here we characterize 
essential components required for the 
incorporation of serine and selenocysteine 
into the proteome of Trypanosoma. First, the 
biological function of a putative Trypanosoma 
seryl-tRNA synthetase is characterized in 
vivo. Secondly, the molecular recognition by 
Trypanosoma seryl-tRNA synthetase of its 
cognate tRNAs is dissected in vitro. The 
cellular distribution of tRNASec is studied, and 
the catalytic constants of its aminoacylation 
are determined. These are found to be 
markedly different from those reported in 
other organisms, indicating that this reaction 
is particularly efficient in trypanosomatids. 
Our functional data are analyzed in the 
context of a new phylogenetic analysis of 
eukaryotic seryl-tRNA synthetases that 
includes Trypanosoma and Leishmania 
sequences. Our results show that 
trypanosomatid seryl-tRNA synthetases are 
functionally and evolutionarily more closely 
related to their metazoan homologous 
enzymes than to other eukaryotic enzymes. 
This conclusion is supported by sequence 
synapomorphies that clearly connect 
metazoan and trypanosomatid seryl-tRNA 
synthetases.  

 
The formation of aminoacyl-tRNA, 

catalyzed by aminoacyl-tRNA synthetases 
(ARS), is a crucial step in maintaining the 
fidelity of protein biosynthesis. In order to avoid 
misacylation of non-cognate tRNAs, each 
synthetase recognizes identity elements 
idiosyncratic to their cognate substrates. tRNA 
identity elements can be unique and universally 

distributed, as in the case of the G3:U70 base 
pair presented by all tRNAAla (1,2). On  the other 
hand, the evolutionary constraints imposed by 
the necessity of translation fidelity are not rigid, 
and the set of recognition elements for many 
tRNAs have changed during evolution (1,3). 
Thus, the comparison between sets of tRNA 
recognition elements in extant species could be 
used to estimate their evolutionary or biological 
relatedness.  

Here we study the evolution of the serylation 
reaction of tRNASer and tRNASec by 
characterizing this activity in trypanosomatids, a 
group of protozoa normally considered to form a 
basal group within eukaryal (4).  Intriguingly, 
the analysis of the evolutionary history of 
Trypanosoma SerRS, and the determination of 
the identity elements used by this enzyme to 
recognize tRNASer, show that Trypanosoma 
SerRSs are closer relatives of metazoan SerRSs 
than plant, fungi, or other protozoan enzymes. 

Seryl-tRNA synthetases (SerRSs) are class II 
ARS that contain the characteristic active site 
domain of this family of enzymes (5,6). In 
addition to this domain, the structures of most 
SerRSs include a coiled-coil domain at the 
amino end of their sequence and, in the case of 
eukaryotic enzymes, a C-terminal extension that 
plays a modest role on protein stability and 
amino acid recognition (7,8). The N-terminal 
coiled-coil domain is essential for the 
recognition of the elbow and, especially, the 
long variable loop of tRNASer (9,10).  

Studies of the recognition modes between 
SerRS and tRNASer from different kingdoms of 
life have shown that some, but not all, tRNASer 
identity determinants have been conserved 
during evolution (for a review see (11)), and that 
different  recognition modes exist. Thus, in 
bacteria and Saccharomyces cerevisiae the 
specific charging of tRNASer depends on the 
recognition of some base pairs in the acceptor 
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stem, but not of the discriminator base at 
position 73 (12-14). In these cases the sequence 
of the variable loop is also crucial. The 
crystallographic structures of T. thermophilus 
SerRS complexed with  tRNASer, confirm these 
observations (15,16).  

A second type of recognition mode, seen in 
archaeal and human SerRS, is characterized by 
the crucial role of the discriminator base (17-19). 
In these cases the sequence of the variable loop 
is not important, but its size and orientation is 
fundamental for the interaction with the enzyme 
(20,21). The main common features between the 
bacterial and eukaryotic recognition strategies 
are the importance of the variable loop and the 
dispensable character of the anticodon stem-
loop. 

Finally, a third type of tRNASer recognition is 
seen in the SerRSs of methanogenic archaea, 
which use a idiosyncratic N-terminal domain to 
recognize the acceptor stem and the variable 
loop of their tRNA substrates (22). These 
unusual enzymes are also sensitive to the 
discriminator base position of their cognate 
tRNAs (23). 

SerRS also aminoacylates tRNASec with 
serine, as the first step for the incorporation of 
selenocysteine into proteins. Components of the 
selenocysteine insertion machinery have been 
identified by computational methods in species 
of the three branches of the tree of life. Recently 
some of these components have also been 
identified in trypanosomatids, and the existence 
of a tRNASec in these organisms has been 
verified (24). 

The serylation reaction of tRNASec has been 
characterized in detail in E. coli and Homo 
sapiens (25,26), but the system has not been 
characterized in protozoans or other basal 
eukaryotes. In H. sapiens and E. coli, tRNASec 
transcripts have been described as being, 
respectively, 10 and 100 fold less efficient 
substrates for SerRS than tRNASer. It has been 
proposed that this difference is caused by the 
unique structure of tRNASec (26). 

Here we report the first characterization of 
the serylation of tRNASec in trypanosomatids. 
We confirm the expression of tRNASec in 
Trypanosoma brucei and  show that, unlike most 
trypanosomal tRNAs, it is exclusively localized 
in the cytosol. Furthermore we characterize its 
aminoacylation with serine by Trypanosoma 
cruzi SerRS. We show that the aminoacylation 
constants of tRNASec in Trypanosoma differ 
substantially from those reported in other 

organisms, suggesting that kinetic differences in 
the serylation activity of tRNASec may be 
species-specific, and that regulatory strategies 
may exist based on the efficiency of serine-
tRNASec synthesis. 

 
EXPERIMENTAL PROCEDURES 

 
Materials - Oligonucleotides were 

synthesized by Sigma-Genosys. L-[3H] serine 
and HisTrap nickel columns were from 
Amersham Biosciences. Restriction enzymes 
were from New England Biolabs, Pfu Ultra 
DNA polymerase was from Stratagene and 
vector pQE-70 from Quiagen. Novablue cells 
were from Novagen. T. cruzi genomic DNA was 
a gift from Dr. P. Bonay (Universidad Autónoma 
de Madrid, Spain). 

RNAi-mediated ablation of SerRS - RNAi-
mediated ablation of the T. brucei SerRS was 
performed using stem loop constructs containing 
the puromycine resistance gene as described 
(27). As an insert we used a 498 bp fragment 
(nucleotides 1 to 498) of the T. brucei SerRS 
gene. Transfection of T. brucei (strain 29-13), 
selection with antibiotics, cloning and induction 
with tetracycline were done as described (28). 
To analyze the in vivo charging levels of the 
tRNASer and the tRNASec we isolated total RNA 
from uninduced and induced cells by using the 
acid guanidinium isothiocyanate procedure (29). 
The tRNAs remain aminoacylated during this 
procedure due to the low pH employed by the 
method. Subsequently, the RNA samples were 
analyzed on 50 cm long acid urea 
polyacrylamide gels as described (30), which 
can resolve aminoacylated from deacylated 
tRNAs. The gels were analyzed by Northern 
hybridization (31). The following [32P] 5'-end 
labeled oligonucleotides were used as probes: 
5'TGGCGTCACCAGCAGGATTC3' (for the 
tRNASer

CGA) and 
5'ACCAGCTGAGCTCATCGTGGC3' (for 
tRNASec).  

tRNA localization studies - To determine the 
intracellular localization of tRNASec we prepared 
mitochondria free of cytosolic RNAs by 
digitonin extraction and subsequent RNase A 
digestion from procyclic T. brucei as described 
(31). RNAs from total cells or isolated 
mitochondria were purified as indicated above 
(29). To test whether tRNASec concentrations 
were different in different life stages of T. 
brucei, total RNA of procyclic (strain 427) and 
bloodstream (strain AnTat1.1, a gift from Dr. 
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Seebeck, University of Bern, Switzerland) stages 
of T. brucei was purified. To test whether 
expression of tRNASec is induced in medium 
containing selenium, or under oxidative stress, 
total RNA was isolated from procyclic T. brucei 
grown in the absence (0) or the presence of 
0.005 and 0.5 μg/ml of added Na2SeO3, or in the 
absence or presence of 10 and 25 μMol of added 
H2O2 (data not shown). For all RNA fractions 
the relative expression level of the tRNASec was 
analyzed by Northern hybridization using the 
tRNASec-specific oligonucleotide indicated 
above. The tRNAIle was detected using the 
oligonucleotide 
5'TGCTCCCGGCGGGTTCGAA3'.  

tRNA preparation - Constructions containing 
a T7 promoter followed by the gene encoding 
wild type or mutated tRNAs were assembled 
using six DNA oligonucleotides that were first 
annealed, and then ligated, between HindIII and 
BamHI restriction sites of plasmid pUC19. In 
vitro transcription using T7 RNA polymerase 
was performed according to standard protocols 
(32). Transcripts were separated on denaturing 
PAGE, full-length tRNAs were eluted from gel 
using an electroelution apparatus (Schleicher & 
Schüll) and refolded (2 min at 90 ºC followed by 
a gradual reduction of temperature in presence of 
2.5 mM MgCl2). 

Enzyme cloning and purification - The 1.4-
kbp intron-less gene coding for T. cruzi SerRS 
(Tc00.1047053511163.10) was amplified by 
PCR from genomic DNA (strain MC) using Pfu 
Ultra DNA polymerase and cloned in the vector 
pQE-70 for bacterial expression of a C-terminal 
His6-tagged protein. The correct sequence of the 
gene was checked by sequencing it entirely. 
Novablue E. coli cells (Novagen) transformed 
with this construction were grown at 21 ºC up to 
A700nm=0.3. Protein expression was then induced 
with 0.1 mM IPTG during 12 hours. Purification 
on nickel affinity columns was performed using 
standard procedures.  

Aminoacylation assays - Aminoacylation 
was performed at 37 ºC in 50 mM Tris-HCl, pH 
7.6, 15 mM MgCl2, 4 mM DTT, 5 mM ATP, 10 
mM NaCl, 100 μM L-[3H] serine (300 Ci/mol) 
and varying concentrations of tRNA transcripts 
(1-80 μM).  Reaction was initiated by addition 
of pure enzyme and samples of 20 μl were 
spotted onto Whatman 3MM discs at varying 
time intervals (usually 2 min). Radioactivity was 
measured by liquid scintillation. Enzyme 
concentration was experimentally determined for 
each tRNA in order to obtain linear velocities. 

Kinetic constants were obtained from 
Lineweaver-Burk plots using a minimum of  two 
independent measurements and five tRNA 
concentrations.  

Phylogenetic and sequence analyses - The 
sequences of seryl-tRNA synthetases used were 
pulled from GENBANK, either directly or by 
BLAST searches of available genomic 
sequences (33). The total set of sequences was 
aligned with CLUSTALX (34). All sequences 
were initially included in our analysis, but were 
later culled to focus our analysis on the 
eukaryotic clade that contains the Trypanosoma 
sequences. Coiled-coil predictions were done 
using the programs PAIRCOIL (35), COILS 
(36) and MULTICOIL (37). Phylogenetic 
distributions were calculated by parsimony, 
distance and maximum likelihood methods using 
PHYLIP 3.63 package (38). Maximum 
parsimony analysis (MP) was done using 
PROTPARS. The neighbour-joining method was 
applied using the programs NEIGHBOR and 
PROTDIST, with the Dayhoff 120 substitution 
matrix. Maximum likelihood (ML) phylogenies 
were calculated with the program PROML (38) 
using the JTT substitution matrix. The programs 
SEQBOOT and CONSENSE  (38) were used to 
estimate the confidence limits of branching 
points from 1000 bootstrap replicates in the 
parsimony and distance calculations, while 100 
bootstrap replicates were used for the maximum 
likelihood trees. Several combinations of 
sequences were used in our analyses to test the 
robustness of the trees obtained. All the groups 
of sequences used produced exactly the same 
tree topology reported here. 

 
RESULTS 

 
RNAi-mediated ablation of the trypanosomal 
SerRS. 

To confirm that the putative T. brucei SerRS 
gene encodes the functional enzyme in charge of 
serylation of tRNASer and tRNASec we 
established a stable transgenic cell line, that 
allows tetracycline-inducible RNAi-mediated 
ablation of the protein. This cell line stops 
growing after induction of RNAi, confirming 
that the putative SerRS is essential for normal 
growth of the parasite (Fig. 1A). To determine 
the biochemical phenotype of the RNAi cell line 
we isolated total RNA from untreated cells and 
from cells grown in the presence of tetracycline. 
Subsequently, the RNAs were resolved on long 
acid urea polyacrylamide gels (30) which in 
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combination with Northern analysis allow to 
determine the ratio of charged to uncharged 
tRNASer and tRNASec, respectively. The results 
in Fig. 1B and 1C show that ablation of the 
putative SerRS results in selective accumulation 
of both uncharged tRNASer and uncharged 
tRNASec, indicating that the SerRS identified in 
our study is the enzyme responsible for in vivo 
serylation of both of these tRNAs.  

 
Localization of the tRNASec. 

Unlike in other eukaryotes most tRNAs in 
trypanosomatids have a dual localization: 
Approx. 95% are found in the cytosol and 
function in cytosolic translation, however a 
small fraction (approx. 5%) are imported into the 
mitochondrion and function in organelar protein 
synthesis (31). Consequently, trypanosomal 
tRNAs are always encoded in nucleus and never 
on the mitochondrial DNA. T. brucei encodes a 
single selC gene, coding for the tRNASec (24). In 
order to confirm the expression of this tRNA and 
to determine its intracellular localization we 
carried out Northern blot analyses using total 
and mitochondrial RNA fractions from procyclic 
T. brucei. The result in Figure 2A shows that the 
tRNASec is only detected in the cytosol but not in 
the mitochondrion. Exclusive cytosolic 
localization is exceptional in trypanosomatids, 
the only cytosol-specific tRNA known to date 
being the initiator tRNAMet (31). 

 
tRNASec expression is not influenced by the life 
cycle stage, selenium or H2O2. 

In a next series of Northern blots, we tested 
whether the relative amount of tRNASec when 
compared to other tRNAs was dependent on the 
life cycle stage, or sensitive to the concentration 
of selenium or H2O2 in the culture media. Figure 
2B shows that trypanosomal tRNASec is 
expressed to very similar levels in both the 
procyclic and bloodstream forms of T. brucei. 
This suggests that selenocysteine-containing 
proteins play a role throughout the life cycle of T 
.brucei. In contrast to reports in vertebrates (39), 
the expression of the tRNASec in procyclic T. 
brucei is not affected by the addition of selenium 
to the growth medium (Fig. 2C). A similar result 
was obtained when the parasites were grown in 
the presence of H2O2 (data not shown). 

 
Characterization of the serylation reaction of 
tRNASer and tRNASec by T. cruzi SerRS . 

The cloning of SerRS gene was performed 
directly from genomic DNA. The 54 kDa protein 

was expressed in E. coli, and purified to 
homogeneity by affinity chromatography. Gel 
filtration experiments with the purified enzyme 
confirmed its ability to form dimers (data not 
shown), suggesting that T. cruzi SerRS is a 
classical class II aminoacyl-tRNA synthetase 
(5).  

Transcripts of Trypanosoma tRNASer and 
tRNASec were used in aminoacylation assays and 
both were shown to be efficiently aminoacylated 
by SerRS (Fig. 3A). The kinetic constants for the 
serylation of both tRNAs by SerRS were then 
determined (Fig. 3B). The Km for tRNASer of T. 
cruzi SerRS was calculated at 3,2 μM, a value 
comparable to those found in other systems but 
eight fold higher than that calculated for tRNASec 
with the same enzyme. On the other hand, the 
Kcat was essentially identical to that calculated 
for tRNASec. As a result, the Kcat/Km value for 
Trypanosoma tRNASer is seven fold lower than 
that of T. cruzi tRNASec. Interestingly, these 
values are markedly different from those 
reported in other species. Thus, in the human 
system (25), the serylation of tRNASec is 10 fold 
less efficient than that for tRNASer, and this 
difference grows to a 100 fold in favour of 
tRNASer in E. coli (26) (Fig. 3C). 

 
Identity determinants in the acceptor stem of 
tRNASer. 

To understand how T. cruzi SerRS recognizes 
its cognate tRNAs, mutants of tRNASer

CGA were 
produced and their ability to be charged with 
serine was measured in vitro in presence of 
purified SerRS. Fourteen tRNA variants were 
generated, covering nearly 80 % of the primary 
structure. The design of the mutations was 
dictated both by the sequence conservation 
among T. cruzi tRNASer and tRNASec sequences 
(Fig. 4A), and by the distribution of identity 
elements in homologous tRNASer sets. A set of 
modifications targeted individual nucleotides or 
base pairs in the acceptor stem (variants 1 to 9) 
(Fig. 4B), whereas a second set of changes 
introduced large deletions or sequence swaps of 
discrete tRNA domains (variants 10 to 14) (Fig. 
4C).  

The change of the discriminator base G73 for 
pyrimidines had a dramatic effect on the 
charging of tRNASer (mutants 1 and 2) (Table 1), 
indicating that the enzyme strongly recognizes 
this position of the acceptor stem. This 
sensitivity to the discriminator base sequence is 
reminiscent of the recognition mechanisms 



5 

described for H. sapiens and archaeal SerRSs 
(17-19). 

The first base pair (1:72) was found to be the 
most sensitive position in the acceptor stem of 
tRNASer. Indeed, the simple inversion of the 
G1:C72 base pair (mutant 4) completely 
abolished the aminoacylation of this substrate by 
the enzyme. The introduction of a G1:U72 base 
pair in the tRNASer scaffold had no effect on the 
ability of this tRNA to be charged by SerRS 
(mutant 5), indicating that G1 may be 
contributing important contacts to the 
recognition by SerRS (Table 1).  It should be 
noted that both the discriminator base G73 and 
the G1 base found to be essential for recognition 
of tRNASer by Trypanosoma SerRS are 
conserved in the sequences of tRNASec of the 
same species. 

Additional mutations in other regions of the 
acceptor stem had no significant effect on the 
overall recognition of tRNASer by T. cruzi SerRS 
(mutant 6 to 9). Overall, our acceptor stem 
mutations affect mostly Kcat values, suggesting a 
defect in the reactive positioning of the acceptor 
extremity rather than a loss in binding energy.  

 
Identity determinants beyond the acceptor stem 
of tRNASer. 

Next, we wanted to investigate the 
importance of the pseudoknot (D arm, T arm and 
variable loop)  and anticodon domains of T. 
cruzi tRNASer for its recognition by SerRS. The 
three domains of the tRNA that form the 
pseudoknot were individually flipped (mutants 
11 to 13) in order to vary their sequences 
without modifying the local secondary structure 
or the strength of their internal base pairs (Fig. 
4C). None of the three corresponding mutants 
showed any catalytic defect, suggesting that the 
recognition mechanism for the elbow of the 
tRNA is based exclusively on interactions with 
the sugar-phosphate backbone (Table 1).  

To further test this hypothesis the entire 
variable loop was excised, and replaced by the 
most commonly found class I variable loop 
(mutant 14) (Fig. 4C). This replacement had a 
dramatic effect on aminoacylation, causing a 
>8000 fold drop in Kcat/Km. This mutation 
affected both catalytic and affinity constants. 
Our combined data indicates that this domain is 
recognized in a sequence-unspecific manner, 
provides binding energy, and acts as a guide for 
the reactive positioning of the tRNA (Table 1).  

Finally, the entire anticodon loop was deleted 
and replaced by a stretch of four uridines 

(mutant 10) (Fig. 4C). This linker was used 
because it is the least likely to stabilize 
unanticipated structures in this region of the 
tRNA (13). This deletion mutant had only a 
modest effect on the velocity of the 
aminoacylation reaction. This is in agreement 
with other studies that have shown that the 
anticodon domain of eukaryotic tRNASer 
contributes poorly to the serine identity (for a 
review see (11)) (Table 1).  

 
Phylogeny of Trypanosoma SerRS. 

The known genomes of Trypanosoma code 
for only one SerRS gene. The corresponding 
protein is likely used both in the cytoplasm and 
the mitochondria, but no conventional targeting 
sequence can be identified in their sequences. 
The protein is 477 amino acids long, and it 
contains an N-terminal domain predicted to form 
a coiled coil domain (36), as seen in the 
available structural data for homologous 
enzymes (16, 40). 

Multiple sequence alignments readily show 
the presence of a large synapomorphy that 
clusters trypanosomatid SerRSs with the rest of 
metazoan sequences (Fig. 5A). This 
synapomorphy is an insertion of twenty amino 
acids located at the center of the N-terminal 
coiled-coil motif of this group of SerRSs (Fig. 
5B). Coiled-coil prediction of this group of 
sequences suggest that in metazoans  and 
trypanosomatids this region may extend beyond 
the length seen in the structures solved so far 
(data not shown). 

Our phylogenetic analysis of SerRS 
sequences is the first one of this enzyme to 
include kinetoplastid sequences. When 
sequences from all life domains were used, our 
results consistently agreed with previous 
analyses (41-44), supporting the conclusion that 
the overall evolution of this enzyme conforms to 
the canonical phylogenetic tree derived from 
ribosomal RNA sequences (Fig. 6A) (41,43). 
Although we were unable to obtain significant 
bootstrap support for the central branching 
points of the general tree, the trypanosomatid 
sequences strongly associated with metazoan 
sequences with strong bootstrap support, both in 
general trees and those limited to the major 
eukaryotic lineages  (Fig. 6A and 6B). It should 
be stressed here that the region corresponding to 
the synapomorphy that also links Trypanosoma 
sequences with metazoan ones was not used in 
our phylogenetic analyses. 

 



6 

DISCUSSION 
 

The constraints acting over tRNA recognition 
are strictly intra-specific and, for each species 
constitute a complex set of recognition and 
rejection elements that ensures faithful 
translation (45). Possibly this complex set of 
positive and negative identity elements 
contributes to the stability of the genetic code 
and limits its size, because the incorporation of 
new amino acids would require an increase in 
complexity of the recognition problem which 
may be impossible to assume without increasing 
the rate of aminoacylation errors (3). 

In order to study the evolution of these sets of 
recognition elements we decided to characterize 
the recognition of tRNASer and tRNASec by 
Trypanosoma SerRS. In doing so we were 
expecting to extract information about the 
evolution of this recognition mechanism in the 
basal part of the eukaryotic phylogenetic tree. 
For convenience we chose Trypanosoma brucei 
as a model for the in vivo studies, while the in 
vitro studies were performed with Trypanosoma 
cruzi proteins and tRNAs. The overall identity 
between T. cruzi and T. brucei SerRSs is 80 %, 
and the sequences of their tRNASer are 
essentially identical. 

 We have shown that Trypanosoma SerRS 
recognizes its cognate tRNAs using a 
combination of structural signals in the variable 
loop and the sequence information of the 
discriminator base and the first base pair of the 
acceptor stem. The discriminator base G73 and 
the G1 base are essential for recognition by 
Trypanosoma SerRS. These bases are conserved 
among all serine tRNA isoacceptors in 
Trypanosoma, and strongly influence the 
velocity of the serylation reaction.  

Previous studies on tRNASer recognition in 
the three kingdoms of life show that acceptor 
stem recognition by SerRS fluctuates between 
the first four base pairs and the discriminator 
base of the acceptor stem (17, 46, 47). In the 
case of Trypanosoma, this recognition has 
shifted towards the CCA end of the molecule, 
and the discriminator base and the first base pair 
constitute the region recognized by SerRS. 

We have established that the presence of a 
long variable loop is a pre-requisite to tRNASer 

recognition, but that this mechanism is not 
sequence specific. Moreover, the complete 
deletion of tRNASer anticodon domain does not 
affect its serylation by SerRS, confirming that 
the entire stem and anticodon loop is ignored by 

the enzyme during the recognition process. This 
feature is common to all serine systems studied 
so far with the only exception of M. barkeri 
SerRS, which displays a strong interaction with 
the G30:C40 base pair in the anticodon stem 
(46).  

In summary, our data suggest that the tRNA 
specificity of Trypanosoma SerRS relies on a 
two-pronged mechanism based on interactions 
with the G73 discriminator base and the G1 base 
on one side, and the sequence-independent 
recognition of the variable loop on the other. 
Interestingly, this recognition mechanism 
functionally associates trypanosomatid SerRSs 
with their metazoan homologs, and separates 
them from other eukaryotic enzymes such as S. 
cerevisiae SerRS. This functional relationships 
are in agreement with the phylogenetic 
connections that we report here, and the 
presence of clear sequence synapomorphies that 
link these enzymes evolutionarily.  

A possible explanation to this functional 
convergence would be a lateral gene transfer 
event between trypanosomatids and metazoans 
that could be favored by the parasitic nature of 
the former. A second possibility, more in 
agreement with polyphiletic  views of eukaryote 
evolution (4), would be that the recognition 
solution displayed by metazoans and 
trypanosomatids is ancient, having persisted in 
these two groups of organisms since their 
radiation at the base of the eukaryotic 
evolutionary tree.  Our phylogenetic studies do 
not allow us to discard either possibility. 

Another interesting feature of trypanosomatid 
SerRSs is their apparently high affinity for 
tRNASec. Indeed, the Kcat/Km value for the 
aminoacylation of Trypanosoma tRNASer (which 
are comparable to values established for other 
species) is seven fold lower than that found for 
T. cruzi tRNASec, a result that is in direct contrast 
with the values reported for the human system 
(25) (where the tRNASer is 10 fold more 
efficiently charged than tRNASec) or in 
Escherichia coli  (26) (100 fold difference in 
favour of tRNASer) (Fig. 3B).  

It should be noted here that all the studies 
where these values are reported (including this 
one) were performed with transcript tRNAs, thus 
excluding the potential effect of base 
modifications in either substrate. However, there 
seems to be a clear difference between the 
relative aminoacylation of tRNASec and tRNASer 
between trypanosomatids and other species. This 
may be explained by a high requirement for 
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selenoprotein synthesis in these species. Our 
attempts to increase the levels of tRNASec in T. 
brucei by the presence of oxidative stress or 
different growth conditions were unsuccessful, 
but these results are not necessarily 
contradictory with a high level of selenocysteine 
use by these organisms. 

From our studies it is clear that tRNASec is 
not imported into the mitochondria of T. brucei. 
Some of us have recently shown that tRNA 
localization signals in this species are confined 
to two nucleotide pairs in the T-stem (48). In the 
cytosol-specific initiator tRNAMet these positions 
include the anti-determinants that, based on 
experiments with vertebrate initiator tRNAMet 

(49), are predicted to prevent interaction with 
translation elongation factor 1a (eEF-1a). The T-

stem sequence of the cytosolic tRNASec is 
different to all other T. brucei tRNAs including 
the cytosolic initiator tRNAMet. However, a 
feature that is shared between the two cytosol-
specific tRNAs in T. brucei is that neither 
interacts with eEF-1a. Instead, the initiator 
tRNAMet interacts with initiation factor 2, and the 
tRNASec with the specialized elongation factor 
SelB/EFsec.  

Thus, while the structural determinants that 
prevent interaction with EF-1a are different for 
both tRNAs, the mechanism for cytosolic 
localization might in both cases be achieved by 
exclusion of EF-1a binding. In other words, all 
tRNAs that interact with eEF-1a might be 
imported into mitochondria, and the ones which 
do not remain in the cytosol. 
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FIGURE LEGENDS 

 
Fig. 1. SerRS is essential for growth of procyclic T. brucei and is responsible for the serylation of both 
tRNASer and tRNASec. (A) Growth curve in the presence and absence of tetracycline (+, -Tet) of a 
representative clonal T. brucei RNAi cell line ablated for the trypanosomal SerRS homologue. (B) 
Northern blot analysis of total RNA isolated under acidic conditions from the SerRS RNAi cell line. 
Hours of induction by tetracycline are indicated at the top. The blots were probed for the T. brucei 
tRNASer  and tRNAIle. The latter serves as controls that is not affected by the RNAi. The RNA 
fractions were resolved on long acid urea gels that allow to separate aminoacylated (aa) from 
deacylated (dea) tRNAs. The relative amounts of deacylated tRNASer and tRNAIle are indicated at the 
bottom. For each lane the sum of aminoacylated and deacylated tRNA was set to 100% percent. (C) 
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Same as (B) but analysis was done for the tRNASec. The x refers to an unidentified band probably 
corresponding to phosphoserine.  
 
Fig. 2. Expression of tRNASec in T. brucei. (A) tRNASec is not imported into the mitochondrion. Left 
panel: 0.1 x 108 cell equivalents of total (Tot.) and 2 x 108 cell equivalents of mitochondrial (Mito.) 
RNA, isolated by digitonin extraction from procyclic T. brucei, were separated on a 10% 
polyacrylamide/8 M urea gel and stained with ethidium bromide. Right panel: the gel was processed 
for Northern hybridization and probed for tRNASec and imported tRNAIle. (B) tRNASec is expressed in 
both life cycle stages. Total RNA, 5 and 7 μg each, of procyclic (Proc.) and bloodstream stage T. 
brucei was analyzed by Northern hybridization as in (A). The relative expression levels (set to be 1 for 
procyclic RNA) of the tRNASec when compared to the expression of tRNAIle are indicated at the 
bottom. (C) Expression of tRNASec is not induced in medium containing selenium. Five μg of total 
RNA isolated from procyclic T. brucei grown in the absence (0) or the presence of 0.005 and 0.5 
μg/ml of added Na2SeO3 were analyzed by Northern hybridization as in (A) and (B). The relative 
expression levels are indicated. 
 
Fig. 3. Comparison of charging efficiency of tRNASec and tRNASer from various origins. (A) 
Aminoacylation plot of trypanosomal tRNASer (■) and tRNASec (♦) in the presence of purified seryl-
tRNA synthetase and [3H] serine. Three independent measures have shown only minimal variations of 
the charging activity, ranging from 1 to 15% (data not shown on the graph for visual clarity). (B) 
Comparison of the kinetic values for the in vitro serylation of trypanosomal, human and E. coli 
transcribed tRNASer and tRNASec (25, 26, this work).  N.D., not determined (C) Histogram showing 
the efficiency of aminoacylation of tRNASec with respect to tRNASer for T. cruzi, H. sapiens, and E. 
coli. The level of aminoacylation efficiency of tRNASer is indicated by a dashed line. The gray 
columns represents the level of aminoacylation efficiency of tRNASec. T. cruzi tRNASec is 7 fold more 
efficiently aminoacylated than T. cruzi tRNASer. * The data concerning E. coli tRNASer and tRNASec 
were reported from experiments using total protein extract as the source of SerRS (26).  
 
Fig. 4. Secondary structure of tRNASer

CGA and its mutants. (A) The cloverleaf structure of tRNASer
CGA 

is presented. The circles denote nucleotides conserved among the four T. cruzi tRNASer isoacceptors. 
The squares denote nucleotides conserved both in tRNASer and tRNASec. (B) Detail of the mutations 
performed on the acceptor stem of tRNASer

CGA. Each mutant is labeled in parenthesis. (C) Detail of the 
mutation performed beyond the acceptor stem. Curved arrows and dashed lines are used to denote the 
flipping, and the deletion of sequences, respectively.  
 
Fig. 5. Sequence alignment of the region of SerRS sequences that contains the synapomorphy that 
links metazoan and trypanosomatid enzymes. (A) The alignment was performed using CLUSTAL X 
(34). T. cruzi and T. brucei SerRS sequences are in bold. Helix 1 and helix 2 indicate the long helices 
that form the coiled-coil arm found in T. thermophilus SerRS. The insertion that is present in metazoan 
and trypanosomatid sequences is boxed and labeled accordingly. (B) Crystallographic structure of one 
monomer of T. thermophilus SerRS (16). The coiled-coil arm important for the stabilization of the 
tRNASer pseudoknot is highlighted in green. The apparent insertion point of the metazoan and 
trypanosomatid synapomorphy is marked by an arrow and labeled accordingly.  
 
Fig. 6. Phylogenetic analysis of trypanosomal SerRS. 
(A) Maximum likelihood tree of archaeal, bacterial, and eukaryotic seryl-tRNA synthetase sequences. 
The overall architecture of  this tree was obtained with all methods used, but bootstrap support was 
weak (not shown). (B) Consensus tree of eukaryotic seryl-tRNA synthetase sequences. The association 
between trypanosomatid and metazoan SerRSs is highlighted. Numbers correspond to percentages of 
bootstrap support for each node from the parsimony, distance, and ML analyses. 
 
Table 1. Serylation parameters of tRNASec, tRNASer and its variants in presence of SerRS. The rate of 
aminoacylation of the wild type tRNASer is 9.56 s-1. For better readability the kcat of each mutant is 
expressed as a percentage of the kcat value of the wild type tRNASer (i.e. a rate of 9.56 s-1 corresponds 
to a kcat of 100%). The overall efficiency of serylation has been determined as the ratio between the 
Km and the kcat. To enhance the readability the efficiency of the wild type tRNASer have been set at 1. 
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Values higher than 1 denote tRNA variants that are less efficiently aminoacylated and vice versa. 
Numbers in parentheses refers to the mutations detailed on figure 4B and 4C. 
αND, not determined 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
 
 
 

 



15 

Figure 5 
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Figure 6 
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Table 1 
 
 

Transcripts kcat (%) Km (μM) rel Km/kcat 

Wild-type tRNASer
CGA 100 3.2 1 

Wild-type tRNASec
UCA 91 0.4 0.1 

G73→A (1) 16 4.7 9.1 
G73→C (2) 1 13 416.6 
G73→U (3) 0.01 αnd αnd 
G1:C72→C:G (4) <0.001 αnd αnd 
G1:C72→G:U (5) 89 2.0 0.7 
U2:A71→A:U (6) 82 0.9 0.3 
U2:A71→G:C (7) 165 4 0.7 
U2:A71→U:G (8) 114 2.6 0.7 
C3:G70→G:C (9) 56 5.6 3.1 
Δ anticodon domain (10) 15 2.5 5.3 
D arm Flip (11) 152 3.5 0.7 
T arm Flip (12) 101 3.9 1.2 
Variable loop Flip (13) 85 6.4 2.4 
Δ variable loop (14) 0.25 71 8 928 
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ABSTRACT 

 

The mitochondrial inner and outer membranes are composed of a variety of integral 

membrane proteins, assembled into the membranes post-translationally. The small 

TIMs are a group of ~10 kDa proteins that function as chaperones to ferry imported 

membrane proteins across the mitochondrial intermembrane space. In yeast there are 

five small TIM proteins: Tim8, Tim9, Tim10, Tim12 and Tim13, with equivalent 

proteins reported in humans. Using hidden Markov models we find that many 

eukaryotes have proteins equivalent to the Tim8 and Tim13 and the Tim9 and Tim10 

subunits. Some eukaryotes provide “snapshots” of evolution, with a single protein 

showing the features of both Tim8 and Tim13, suggesting that a single progenitor 

gene might have given rise to each of the small TIMs through duplication and 

modification. We show that no “Tim12” family of proteins exist, but rather that 

variant forms of the cognate small TIMs have been recently duplicated and modified 

to provide new functions: the yeast Tim12 is a modified form of Tim10, while in 

humans and some protists variant forms of Tim9, Tim8 and Tim13 are found instead. 

Sequence motif analysis reveals acidic residues conserved in the Tim10 substrate-

binding tentacles, whereas more hydrophobic residues are found in the equivalent 

substrate-binding region of Tim13. The conserved features in the Tim10 and Tim13 

subunits provide distinct binding surfaces to accommodate the broad range of 

substrate proteins delivered to the mitochondrial inner and outer membranes. 

 

 

 

Keywords: mitochondria, protein import, hidden Markov model, protein 

translocase, molecular parasitology 

 

Abbreviations: TOM, translocase of the outer mitochondrial membrane; TIM, 

translocase of the inner mitochondrial membrane; SAM, sorting 

and assembly machinery in the outer mitochondrial membrane; 

AAC, ATP/ADP carrier; HMM, hidden Markov model; DAPI, 

4',6-diamidino-2-phenylindole 



Mitochondria are found ubiquitously in eukaryotes where they house 10-20% of the 

cellular proteome (Sickmann, Reinders et al. 2003; Ohlmeier, Kastaniotis et al. 2004; 

Reichert & Neupert, 2004; Prokisch et al. 2004; Gabaldon & Huynen, 2004), with up 

to a thousand proteins of varying biochemical properties having to be imported into 

the organelle and sorted to one of the four sub-mitochondrial compartments. A series 

of four molecular machines in the outer and inner mitochondrial membranes are 

responsible for the import and assembly of mitochondrial proteins (Pfanner and 

Geissler 2001; Herrmann and Neupert 2003; Koehler 2004; Pfanner, Wiedemann et 

al. 2004; Dolezal, Likic et al. 2006). These machines: the TOM complex, SAM 

complex, TIM23 complex and TIM22 complex, are composed of thirty to forty 

subunit parts that function as distinct modules. Some of the modules found in the 

yeast protein import machinery are conserved in animals and plants, while others 

seem to be more restricted in their distribution suggesting they have arisen more 

recently (Dolezal, Likic et al. 2006). Comparative analysis of the protein import 

machinery from various eukaryotic groups provides a powerful means to address how 

the component parts combine to form functional machines, and how the machines 

handle the broad range of substrate proteins imported into mitochondria. 

 

The several hundred membrane proteins imported into mitochondria enter an aqueous 

channel in the TOM complex, enabling their translocation across the outer membrane 

(Brix, Dietmeier et al. 1997; Dietmeier, Honlinger et al. 1997; Schatz 1997; Pfanner, 

Wiedemann et al. 2004). Those proteins destined for assembly into the outer 

membrane are then transferred to the SAM complex. Most of the proteins destined for 

the inner membrane, including the abundant metabolite carrier proteins, are 

transferred instead to the TIM22 complex. It remains unclear how a given substrate 

protein is recognized for specific delivery to either the SAM or TIM22 complex, but it 

is known that the transfer reaction requires the assistance of the small TIM chaperones 

(Rehling, Model et al. 2003; Koehler 2004; Koehler 2004; de Marcos-Lousa, Sideris 

et al. 2006). The small TIMs are a group of ~10 kDa proteins originally characterised 

by a unique arrangement of cysteines: two sequence motifs of CX3C separated by 11-

16 residues (Koehler 2004). This superfamily of proteins, referred to as zf-Tim10DDP 

(PF02953), is collected together as a single group by the Conserved Domain Database 

(Marchler-Bauer, Anderson et al. 2005) because of the common features centred 

around the conserved CX3C sequences. The cysteines contribute to two pairs of 



disulfide bonds that maintain the structural integrity of the proteins (Allen, Lu et al. 

2003; Webb, Gorman et al. 2006).  

 

In yeast there are five members of the zf-Tim10DDP family: according to their 

approximate molecular weight in kDa these proteins are called Tim8, Tim9, Tim10, 

Tim12 and Tim13. Three of these, Tim9, Tim10 and Tim12 are essential for cell 

viability while the genes encoding the other two, Tim8 and Tim13, can be deleted 

without obvious effects on cell growth (Koehler, Leuenberger et al. 1999).  Tim9 and 

Tim10 combine to form a α3β3 hexamer, and the function of this Tim9/Tim10 

complex has been studied in detail (Koehler, Merchant et al. 1998; Adam, Endres et 

al. 1999; Luciano, Vial et al. 2001; Curran, Leuenberger et al. 2002; Curran, 

Leuenberger et al. 2002; Truscott, Wiedemann et al. 2002; Lu, Golovanov et al. 2004; 

Lu and Woodburn 2005; Webb, Gorman et al. 2006). The essential Tim12 sits as a 

peripheral subunit on the inner membrane TIM22 translocase, where it appears to help 

unload substrates delivered by the Tim9/Tim10 complex (Koehler, Jarosch et al. 

1998; Sirrenberg, Endres et al. 1998; Bauer, Rothbauer et al. 1999; Endres, Neupert et 

al. 1999; Muhlenbein, Hofmann et al. 2004). It has not been clear why yeast also 

expresses the Tim8 and Tim13 members of this protein family, however it is known 

that these form a second α3β3 hexameric complex which appears to perform 

analogously to the Tim9/Tim10 complex in delivering substrate proteins to the outer 

and inner membranes (Koehler, Leuenberger et al. 1999; Curran, Leuenberger et al. 

2002). 

 

Due to the sequence conservation in the small TIMs, BLAST searches with the yeast 

sequences revealed corresponding human proteins. The Tim9/Tim10 complex from 

humans is involved in inner membrane protein insertion (Bauer, Rothbauer et al. 

1999; Muhlenbein, Hofmann et al. 2004) and its crystal structure was recently solved 

(Webb, Gorman et al. 2006). It consists of a ring-shaped hexamer formed from 

alternating Tim9 and Tim10 subunits. The Tim8/Tim13 complex is also found in 

humans and a mutation in one of the genes encoding Tim8 leads to Mohr-Tranebjaerg 

syndrome (Koehler, Leuenberger et al. 1999; Bauer and Neupert 2001; Roesch, 

Curran et al. 2002). This demonstrates that the Tim9/Tim10 complex can not subsume 

all the activities of the Tim8/Tim13 complex, although in vitro studies show the role 



played by the Tim8/Tim13 complex to be a minor one in both humans and in yeast 

(Curran, Leuenberger et al. 2002; Curran, Leuenberger et al. 2002; Truscott, 

Wiedemann et al. 2002). We have taken a comparative genomics approach to assess 

the role of the small TIM proteins in delivery of substrates to the mitochondrial 

membranes, addressing three questions. Firstly, does a signature motif exist beyond 

the duplicate CX3C sequence that defines each of the five small TIMs? Secondly, how 

do these defining motifs relate to the three dimensional structure of the small TIM 

proteins, in terms of subunit interactions and recognition of substrates? Thirdly, can 

these motifs be used to determine whether or not all organisms encode and rely on 

Tim12 and both the Tim9/Tim10 and Tim8/Tim13 complexes? 

 

Using hidden Markov models (HMMs) we find that many eukaryotes have proteins 

equivalent to the Tim8 and Tim13 and the Tim9 and Tim10 subunits of yeast. We 

show that no “Tim12” family of proteins exist, but rather that different organisms 

have variant forms of one of the four cognate small TIMs: the yeast Tim12 is a 

modified form of Tim10, while in humans and some protists variant forms of Tim9, 

Tim8 and Tim13 are found instead. Many fungi, plants and other eukaryotes have no 

variant TIM that would serve the role of the yeast Tim12.  Motifs of conserved 

residues that define each of the four small TIM families map to crucial inter-subunit 

contacts in the small TIM hetero-hexamers, and also to substrate-binding regions. 

Residues in the N-terminal segments are distinct in the Tim10 and Tim13 substrate-

binding subunits: acidic residues are conserved in the Tim10 substrate-binding 

tentacles whereas more hydrophobic residues are found in the equivalent region of 

Tim13. The comprehensive sequence analysis made possible with the hidden Markov 

models shows some eukaryotes have a reduced number of small TIMs, with only two 

or three genes present. While some apicomplexan parasites like the malaria-causing 

Plasmodium have clear and distinct Tim9, Tim10, Tim8 and Tim13 subunits, the 

genome of a related apicomplexan, Theileria parva, encodes a Tim9 and a Tim10 and 

then has a third gene that encodes a hybrid Tim8-Tim13 protein. This work suggests 

that the small TIM chaperones were present in the last common ancestor to the 

eukaryote lineage, and that distinct features in the four types of small TIMs are 

critical: they have been maintained, or independently evolved, to be present in diverse 

eukaryotes and the distinct features in the Tim10 and Tim13 subunits provides for a 



broad range of substrate proteins to be collected and ferried across the mitochondrial 

intermembrane space. 

 



RESULTS 

There are four, distinct small TIM families: Tim8, Tim9, Tim10 and Tim13 

Tim9, Tim10, Tim8, Tim13 and Tim12 were first identified in yeast (Jarosch, Tuller 

et al. 1996; Koehler, Merchant et al. 1998; Sirrenberg, Endres et al. 1998) and a 

thorough characterization of the homologs of these proteins in humans has been done 

(Bauer, Rothbauer et al. 1999; Jin, Kendall et al. 1999). Starting with the functionally 

characterised small TIMs from yeast and humans, BLAST searches were used to 

gather an initial set of 53 small TIM sequences. From a phylogenetic analysis, these 

cluster into four groups with each of the groups containing at least one of the cognate 

small TIMs from yeast (data not shown). The Tim12 and Tim10 sequences from yeast 

sit in a single group. 

 

The grouped sequences were then used to construct four hidden Markov models, one 

describing each of the small TIM sub-families. The HMMs were used to extract 

related sequences from UniProt 7.5 sequence data.  Those sequences that had been 

used to construct the HMM were recognised in UniProt with scores of E >10e-40. 

This then constitutes a “perfect match” in this search. All of the novel sequences 

retrieved with scores above E = e-05 are proteins of 50-100 residues, carry the twin 

CX3C motif and were therefore collected as members of the small TIM family. The 

141 small TIM sequences discovered here come from a broad range of eukaryotes, but 

none were found in prokaryotes. A number of complete genome sequence data sets 

are present in UniProt, and the small TIM proteins discovered in these organisms are 

listed in Table 1.  

 

Each of the four small TIM families was then analysed for motifs, in order to 

determine those features that distinguish each of the four families. The motifs are 

represented in Figure 1. In all Tim9 sequences, a single motif exists with fifteen 

residues situated between the two CX3C sequences. Numerous key residues in the 

motif are highly conserved as judged by the height of the character in the sequence 

logo (Figure 1). In the other TIM families there are two motifs, which are broken by 

the insertion of a variable number of residues: in Tim10, there are 15-21 residues 

between the twin CX3C sequences, in Tim8 there are 14-18 residues while the Tim13 

sequences have 11-14 residues inserted between the twin CX3C sequences. The region 

between the twin CX3C sequences is known to form a flexible loop (Webb, Gorman et 



al. 2006), which could accommodate the variable number of residues. The conserved, 

diagnostic motifs found here extend well beyond the twin CX3C sequences, with the 

key residues conserved within each motif distinguishing the four families. For 

example, there are several conserved acidic residues in the N-terminal region of all 

the Tim10 sequences that are not found in the other small TIMs. 

 

Tim12-type proteins are the result of recent gene duplication events 

While only four characteristic families of small TIMs can be recognised, in many 

organisms for which complete sequence data is available, five distinct small TIM 

proteins were found: one corresponding to each of the cognate families and a fifth 

isoform that fits less well to the criteria shown in any of the conserved motifs. The 

best studied of these is the yeast Tim12, a peripheral component of the TIM22 

complex (Koehler, Jarosch et al. 1998; Sirrenberg, Endres et al. 1998). Tim12 appears 

to serve as a docking point for the substrate-Tim9/Tim10 complex. Yeast Tim12 

matches the Tim10 motif, though poorly compared to bone fide Tim10 homologues. 

A peripheral small TIM component of the TIM22 complex has also been described in 

humans (Muhlenbein, Hofmann et al. 2004), but this small TIM (Q9Y5J6) best 

matches the sequence criteria of the Tim9 HMM (E = 5.30e-46) rather than the Tim10 

HMM (E = 6.00e-5). Thus it seems that the TIM22 complex subunit can be of either 

type of small TIM. Furthermore, the four species of Plasmodium for which complete 

genome data are available have a variant TIM that matches either the Tim8 or Tim13 

HMM (E ~ e-05 to e-08 in all cases). This would suggest that the acquisition of a 

fifth, “Tim12” type, subunit might have occurred relatively recently and have come 

about independently in various lineages of eukaryotes. In keeping with this proposal 

plants, amoeba, kinetoplastids and filamentous fungi have no apparent variant form of 

small TIM available to fulfil this function. Presumably in these organisms the import 

pathway has evolved such that substrate-loaded small TIM complexes can dock to the 

TIM22 complex directly, without the assistance of a pre-bound Tim12 subunit. 

 

Mapping the conserved residues onto the structural framework of the Tim9/Tim10 

complex 

The conserved residues discovered in the sequence motifs might be expected to form 

functionally important surfaces: either in subunit interfaces, as surfaces that dock to 

other components of the import machinery, or in substrate-binding features. The 



structure of the Tim9/Tim10 complex from humans was recently solved by X-ray 

crystallography (Webb, Gorman et al. 2006) providing a framework to analyse the 

conserved features. Many of the highly conserved residues pinpointed in the motif 

analysis form contacts between the Tim9 and Tim10 subunits. For example, at the 

interface between the front face of Tim9 and the back face of Tim10: F29 and F36 of 

Tim9 form a conserved buried core with Y58, K32 and the C54-C29 disulphide bond 

of Tim10 (Figure 2A). Where the front face of Tim10 contacts the back face of Tim9, 

the most highly conserved interchain contacts are ionic interactions between D52 and 

R62 as well as E47 and K55 (Figure 2B). Thus conserved patches on both faces of 

Tim9 and Tim10 subunits contribute to the subunit interfaces of the hexamer.  

 

As a result of these conserved inter-subunit contacts, a highly conserved surface can 

be seen at the top of the hexamer (Figure 2C). The surface would be continuous but 

for the poorly-conserved regions of the loops between the CX3C motifs in each 

subunit. These loops break the conserved surface into two patches: the first is formed 

from Tim10 residues K32, G46, E47, C33-C50, R53 and the Tim9 residues F36 and 

K55, while the second, smaller patch is each formed from Tim9 residues E45 and 

C32-C48. It is possible these patches are purely a by-product of the conserved core 

being partially exposed at the surface; playing no functional role outside maintaining 

the structural integrity of the hexamer. However, the conserved surface would make 

an attractive means for the TIM complex to dock with other conserved components of 

the import machinery. 

 

Substrate-binding regions in the Tim9/10 and the Tim8/Tim13 complexes 

The first twenty-one residues of Tim10 are required for substrate binding (Vergnolle, 

Baud et al. 2005) and form three “tentacles” extending down from the inner ring of 

helices in the Tim9/Tim10 hexamer (Webb, Gorman et al. 2006). In the crystal 

structure, only one of these chains has all twenty-one residues defined, sitting in two 

contiguous helices (Figure 3A), the other two tentacles have N-terminal extensions 

that could not be resolved (Webb, Gorman et al. 2006). Mapping the conserved 

residues from the Tim10 motif onto the structure shows the various ways the acidic 

residues are displayed in the three tentacle conformations (Figure 3B), and none of the 

conserved residues in the tentacles appears to be involved in contacting neighbouring 

Tim9 subunits.  



 

When Tim10 is purified in isolation from Tim9, it exists in a small soluble form that 

might be either a monomer or dimer (Vial, Lu et al. 2002; Webb, Gorman et al. 2006). 

The purified Tim10 subunit binds the inner membrane substrate AAC in a manner 

similar to the Tim9/Tim10 complex, whereas Tim9 alone does not bind at all. The N-

terminal helix of the Tim10 subunit is required for substrate binding (Vergnolle, Baud 

et al. 2005).   

 

Motif analysis also described a highly conserved N-terminal region in Tim13 (Figure 

1) and we sought to determine if Tim13 might be the substrate binding subunit of the 

Tim8/Tim13 complex. A cellulose filter carrying 103 peptides representing the 

ADP/ATP carrier protein (AAC), a substrate of the small TIM chaperones, was 

incubated with purified Tim8 or Tim13. A discrete set of spots, highlighting the 

peptides bound by Tim13, can be seen on the filter (Figure 4A, upper panel). The 

peptides bound by Tim13 correspond to the hydrophobic transmembrane domains of 

AAC. These same regions of AAC are bound by Tim10 and the native Tim9/Tim10 

complex (Curran, Leuenberger et al. 2002; Vasiljev, Ahting et al. 2004; Vergnolle, 

Baud et al. 2005). Binding of Tim8 to the same filter was barely detectable (Figure 

4A, lower panel). To consolidate the idea that Tim13 functions as the substrate sensor 

in the Tim8/Tim13 complex, a second cellulose filter carrying peptides from the inner 

membrane protein Tim22 was tested in the same way. Again, Tim13 binds to discrete 

peptides on the membrane, while Tim8 bound weakly, to only one peptide spot 

(Figure 4B). As is the case for its binding to AAC, Tim13 binds peptides 

corresponding to the predicted transmembrane regions of the Tim22 substrate. This 

behaviour has also been demonstrated for the Neurospora crassa Tim9/Tim10 

complex on a Tim22 peptide membrane (Vasiljev, Ahting et al. 2004). Both Tim10 

and Tim13 therefore act as substrate sensors for their respective complexes, by 

binding to hydrophobic transmembrane segments of their substrate proteins.   

 

Organisms lacking a Tim8/Tim13 complex? 

Some organisms appear to lack genes that would encode Tim8 and Tim13 family 

members. Dictyostelium discoideum is a case in point where very clear Tim9 and 

Tim10 subunits are found while no other small TIM sequences are present in the 

completely sequenced genome (Table 1). Further species of eukaryotes for which 



complete genome data is available also lack Tim8 and Tim13 proteins. However  

Theileria parva, Leishmania major, Trypanosoma cruzi and Trypanosoma brucei 

show intriguing sequences that might represent ancestral-type composite Tim8-13 

proteins.  

 

The kinetoplastida represents some of the earliest diverging forms of eukaryotes and 

include the human pathogens L. major, T. cruzi and T. brucei. Each of these 

organisms has three small TIMs. In T. brucei the first TIM matches both the Tim9 

model and Tim10 model (E = 1.10e-06, E = 1.90e-07, respectively) and the second 

protein specifically matches the Tim10 HMM (E = 2.20e-05). The third sequence has 

limited conservation to any of the four TIM families, but conserved residues within 

the N-terminal half of the protein most closely match the signatures of Tim13, and 

conserved residues within the C-terminal half most closely match the signatures of 

Tim8.  

 

Little is known about the protein import apparatus in the kinetoplastid mitochondrion. 

However, a few of the most conserved components of the protein import machinery 

have been annotated within the completely sequenced genomes (El-Sayed, Myler et 

al. 2005) including the inner membrane translocase Tb11.01.4870, a member of the 

Tim17/Tim22/Tim23 family of proteins (PF02466; (Marchler-Bauer, Anderson et al. 

2005) that would serve as the core of the inner membrane (TIM) protein translocase. 

Depletion of this protein by RNAi in cultured procyclic form parasites gives a 

mitochondrial defect, with the normally reticular mitochondrion becoming a globular 

mass as judged from immunofluorescent staining of the mitochondrial matrix protein 

Hsp60 (Figure 5B). The defect, seen in 60-75% of cells after 72 hours of treatment 

(Figure 5C), might reflect the paucity of protein insertion into the mitochondrial 

membranes, and is distinct from the morphology after RNAi treatment of other 

essential proteins (Esseiva, Chanez et al. 2004; Smid, Horakova et al. 2006). Over the 

same timecourse, RNAi treatment to deplete the Tim8-13 of T. brucei yields the same 

mitochondrial defect, (Figure 5B, 5C) demonstrating that this small TIM protein 

functions as a crucial component in the mitochondria of these kinetoplastids. 

 

Complete genome sequence data is also available for three groups of apicomplexan 

parasites, seven species in all from Plasmodium, Cryptosporidium and Theileria. 



Cryptosporidium parvum and Cryptosporidium hominis have only relic mitochondria, 

the mitosome, with a greatly reduced set of proteins targeted to this organelle 

(Putignani, Tait et al. 2004; Henriquez, Richards et al. 2005); the genomes of these 

organisms encode only one small TIM, which has the characteristics of both Tim8 and 

Tim13 (Table 1). In Theileria parva, three proteins are encoded: the first matches the 

Tim9 HMM (E = 8.10e-41) and the second matches the Tim10 HMM (E = 9.10e-9). 

The third small TIM from T. parva matches both the HMM for Tim13 (E = 5.60e-07) 

and the HMM for Tim8 (E = 5.10e-41). In the genome sequence of the four diverse 

species of Plasmodium, four cognate small TIMs were detected. Each is remarkably 

similar to the Tim9, Tim10, Tim8 and Tim13 proteins found in humans and yeast 

(Table 1).  

 

 



DISCUSSION 

 

Delivery of substrates to the outer and to the inner membrane translocases 

Recent functional analyses rule out the prospect that the two small TIM complexes 

selectively deliver substrates to either the outer membrane or to the inner membrane 

(Leuenberger, Bally et al. 1999; Davis, Sepuri et al. 2000; Curran, Leuenberger et al. 

2002; Truscott, Wiedemann et al. 2002; Hoppins and Nargang 2004). Both 

Tim8/Tim13 and Tim9/Tim10 complexes are required for the efficient delivery of 

outer membrane substrates (Hoppins and Nargang 2004; Wiedemann, Truscott et al. 

2004) and both complexes assist in the delivery of some inner membrane proteins. It 

seems that both chaperones bind predominantly to transmembrane segments of their 

substrate proteins. The identity of the residues conserved in the tentacles of Tim10 

and the equivalent region of Tim13 differ, with numerous alanine residues diagnostic 

of the Tim13 substrate-binding segment. This might provide some differences in the 

range of peptide segments bound: we note that Tim13 binds best to the last 

transmembrane segment of the Tim22 substrate (Figure 4B) while Tim10 binds best 

to the second transmembrane segment (Vasiljev, Ahting et al. 2004). The N-terminal 

tentacle of both proteins predicts highly for propensity to form a coiled coil (data not 

shown). This structural feature may also contribute to substrate binding; in coils, the 

chaperone’s α-helical tentacles might shield hydrophobic helical segments of 

substrate. 

 

In yeast, the TIM8 and TIM13 genes are not essential for cell viability and 

Dictyostelium discoideum lacks Tim8 and Tim13 proteins. The Tim9 and Tim10 in D. 

discoideum are typical, with very high matches to the respective HMM (E = 1.70e-35 

and 4.50e-44). This suggests that a single small TIM complex is sufficient to mediate 

targeting of all membrane protein substrates in this organism. Too little is known 

about mitochondrial protein targeting in D. discoideum yet, but its various substrate 

proteins might be less diverse in their sequence characteristics – which might in turn 

explain how a single small TIM complex could deliver all protein substrates to the 

outer and inner membranes. We suggest that the advantage to most organisms in 

having these distinct small TIM complexes comes in the increased range of substrates 

that can be bound; with the somewhat different substrate-binding tentacles in the 



Tim13 and Tim10 subunits providing a broader capability for the substrates that can 

be recognized and delivered to the TIM22 and SAM complexes for assembly.  

 

The primitive condition: where did small TIMs come from and how? 

Our HMM analysis detects no proteins widely found in bacteria that might represent 

an ancestor chaperone from which the small TIMs have been derived, and we suggest 

that this family of chaperones was derived by the host cell in order to facilitate 

membrane protein transfer across the intermembrane space to the inner membrane; a 

pathway not pre-existing in the bacterial endosymbiont. The distinct “primitive” 

conditions, found in this study, each contribute something to a new understanding of 

how the small TIM proteins came about.  

 

Firstly, some eukaryotes have no small TIMs, demonstrating that small TIMs are not 

essential for mitochondrial biogenesis per se. During the first phases of mitochondrial 

evolution, targeting of membrane proteins could have proceeded in the absence of 

small TIMs. Encephalitozoon cuniculi is a microsporidian, and these organisms 

diverged early from the animal and fungal lineage. Microsporidians have massively 

reduced genomes, and in particular have highly simplified mitochondria (referred to 

as “mitosomes”) with no electron transport chain, no ATP synthase and no 

mitochondrial metabolite carriers in their inner membranes (Katinka, Duprat et al. 

2001). The remnant mitochondrion in microsporidians probably houses relatively few 

proteins apart from the simplified mitochondrial protein import apparatus and FeS 

cluster biosynthetic machinery, and therefore has relatively few proteins assembled 

into the mitosomal membranes. The widespread distribution of small TIM proteins in 

other eukaryotes suggests an early origin for the family and that microsporidians have 

therefore lost their TIMs as part of their genome reduction. Microsporidians retain a 

Tom40 that must be assembled into the outer membrane and a vestigial SAM complex 

(Katinka, Duprat et al. 2001; Dolezal, Likic et al. 2006), and a TIM translocase that 

must be assembled in the inner membrane (Katinka, Duprat et al. 2001), thereby 

demonstrating that even in the absence of small TIMs mitochondrial membrane 

protein assembly can be achieved. A similar situation is seen in Trichomonas 

vaginalis, which might also have a reduced membrane protein complexity and shows 

an absence of small TIMs. While themselves being highly evolved organisms, these 



eukaryotes provide a proof-of-principle for a situation in the earliest eukaryotes, when 

relatively few membrane proteins were coded on nuclear genes and in need of import. 

 

The composite small TIM found in species of Cryptosporidium, Theileria, 

Leishmania and Trypanosoma, with the combined sequence characteristics of Tim8 

and Tim13, supports our suggestion that a single gene might be enough to encode a 

functional chaperone. In particular, species of Cryptosporidium appear to have only 

this small TIM. Leishmania and Trypanosoma also have Tim9 and Tim10 proteins but 

the “Tim9” subunit shows strong similarity to both the Tim10 and Tim9 HMMs: we 

suggest this “Tim9” was derived from the Tim10 subunit by a gene duplication event 

but not modified so extensively as the Tim9s in other eukaryotes. Again, this 

represents a proof-of-principle example that in simple eukaryote a single gene 

encoding a suitable hybrid protein, such as Tim8-13 could form a functional 

chaperone. It also illustrates that, starting with a Tim9-10 hybrid protein, Tim9 and 

Tim10 subunits could come about through modification of duplicated genes. 

 

We suggest that early eukaryotes carried a single small TIM, and that duplication of 

this gene gave rise to both the Tim10 and Tim13 type chaperones in the mitochondrial 

intermembrane space. Further gene duplications, and co-dependent mutations created 

the Tim9- and Tim8- type subunits, providing in each the necessary inter-subunit 

contacts to give rise to heteromeric complexes. Much more recently, gene duplication 

events have given rise to the “Tim12” subunit found attached to the TIM22 complex 

in the mitochondrial inner membrane. The development of Tim9/Tim10 and 

Tim8/Tim13 complexes may have occurred very early, so that all eukaryotes inherited 

a full set of the four cognate small TIMs. Alternatively, some of the duplication 

events may have occurred in parallel, in distinct lineages, with correlated mutations 

giving similar outcomes in the Tim9 and Tim8 families. With such small, simply 

structured proteins, this alternative represents a reasonable proposition.  



METHODS 

Hidden Markov models 

The initial set of small TIM sequences gathered from BLAST searches were aligned 

using ClustalX (Jeanmougin, Thompson et al. 1998) and the alignment was used to 

generate a Neighbor-Joining phylogenetic tree that clustered the sequences into four 

main groups, with each of the cognate small TIMs from yeast sitting in one of the four 

groups. The sets representing Tim8, Tim9, Tim10, and Tim13 contained 16, 15, 13, 

and 9 sequences respectively.  The grouped sequences were then used to construct 

HMMs which in turn were used to search the UniProt database for related proteins. 

 

The HMMs were built with the program HMMER 2.3.2 (Durbin 1998). The best 

multiple alignment for each family of sequences was obtained with ClustalW 

(Thompson, Higgins et al. 1994) and t-coffee (Notredame, Holm et al. 1998). The two 

alignment programs produced different best alignments, and we built two sets of 

HMMs (corresponding to ClustalW and t-coffee alignments) for each family of 

sequences (Tim8, Tim9, Tim10 and Tim13).  The resulting HMMs were used to scan 

UniProt database release 7.2 (Swiss-Prot release 49.2 and TrEMBL release 32.2) 

(Bairoch, Apweiler et al. 2005) and also to scan protein data sets from the 

Trichomonas vaginalis and Encephalizoon cuniculi genomes individually, as 

previously described (Dolezal, Likic et al. 2006). The results of all HMM searches 

were manually examined.  The sequences used to construct the HMM were detected 

from within the UniProt search with scores better than E = e-40.  Novel sequences 

retrieved with scores E< e-05 were proteins of 50-100 residues that carry the twin 

CX3C motif and were considered members of the small TIM family.  Sequences 

which scored poorer than E = e-04 were larger than 100 residues, did not carry the 

twin CX3C motif, and were therefore discarded.  Many of these were proteins of 

known function and have predicted (helix-rich) coiled-coil domain structures.   

 

Motif analysis to distinguish four small TIM families 

Proteins deemed to belong to one of the four small TIM families were used to define 

sequence motifs. Note, the hybrid Tim8-Tim13 sequences were not included for motif 

analysis. The program MEME version 3.5.2 (Bailey and Elkan 1994) was used and in 

the first step we searched each given protein family for the single strongest motif 

present in the sequences, the rationale being that if all sequences were correctly 



assigned to a small TIM family they should have at least one common motif. 

Consequently, any sequence which did not have this motif was removed from further 

analysis. This resulted in the removal of one sequence from the initial Tim8, Tim9 

and Tim10 sets. The resulting Tim8, Tim9, Tim10, and Tim13 sets containing 33, 40, 

33 and 25 sequences, respectively, were used in further motif analysis. In the second 

step, we checked for possible motifs that occur as repetitions (MEME 'anr' 

distribution option). No such motifs were found in any of the four protein families. 

Finally, the three most prominent motifs in each family were searched for. The motifs 

were constrained to be between 5 and 128 residues, with the E-value not to exceed 1e-

10. Motifs that were present in all sequences of a sub-family are represented in the 

logos in Figure 1 and have the following characteristics: Tim9 Motif (E-value = 2e-

1115), Tim10 Motifs 1 and 2 (E-values = 1e-543 and = 4e-448), Tim8 Motifs 1 and 2 

(E-values = 2e-400 and = 4e-211), Tim13 Motifs 1 and 2 (E-value = 8e-396 = 3e-

335). No other characteristic motifs were found. From past experience we know that 

the output of a MEME motif search (including the exact beginning or end of a motif) 

may be affected by input parameters (V. Likić, unpublished). To test for reliability in 

the predicted motifs, we ran five repeats of motif elucidation with different input 

parameters. For each family of sequences the resulting motifs were confirmed. 

 

In order to map the critical residues within the motifs onto the crystal structure of 

Tim9/10, the information content (Shannon uncertainty) (Schneider and Stephens, 

1990) was calculated for each column in seperate multiple alignments of Tim9 and 

Tim10 using the Biopython tools (http://biopython.org) and assuming a uniform 

background symbol distribution. These values were mapped to the coordinates of the 

Tim9/Tim10 heterohexamer crystal structure (pdb accession 2BSK) (Webb et al, 

2006) using the occupancy field of the pdb format and analysed using VMD (version 

1.8.4) (Humphrey et al, 1999). 

 

RNAi knockdowns of Tim8-13 and TIM translocase core in Trypanosoma brucei 

RNAi-mediated ablation of the T. brucei Tim8-13 and TIM translocase core was 
performed using stem loop constructs containing the puromycine resistance gene as 

described (Bochud-Allemann and Schneider 2002). The constructs correspond to the 

sequence of the entire open-reading frame of T. brucei Tim8-13 and TIM translocase 

http://biopython.org


genes. Transfection of T. brucei (strain 29-13), selection with antibiotics, cloning and 

induction with tetracycline were done as described (McCulloch, Vassella et al. 2004). 

 

Binding assays with the yeast Tim8/Tim13 complex 

PVDF membranes of 13mer peptides with a ten amino acid overlap were synthesised 

by automated spot synthesis (JPT Peptide Technologies, Berlin, Germany). Binding 

of Tim13 was performed as described (Vergnolle, Baud et al. 2005) with the 

following modifications: Tim13 antibodies were used to detect bound proteins, and 

signals were quantified using ImageQuant software (Molecular Dynamics). 

Transmembrane segments were predicted for Tim22 using DAS (Cserzo et al. 1997) 

and multiple sequence alignments as previously described (Chan, Likic et al. 2006) 

and for Aac2 by alignment with the bovine AAC crystal structure (Pebay-Peyroula, 

Dahout-Gonzalez et al. 2003). 
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FIGURE LEGENDS 
 

Figure 1. Motif representation of the four cognate small TIM families. Sequence 

Logos (Crooks et al. 2004) describing the conserved sequence motifs in each of the 

small TIMs are shown. These centre around the conserved twin CX3C residues. In the 

case of Tim10, Tim8 and Tim13 the motif is broken in two due to a variable number 

of residues in the interhelical loop region. The highly conserved N-terminal region in 

the Tim10 sequences corresponds to the region of the protein that binds substrate 

(Vergnolle, Baud et al. 2005). 

 

Figure 2. Conserved residues sit at the inter-subunit contacts of the Tim9/Tim10 

hexamer. (A) The interface between the “front” face of Tim9 (cyan cylinders) and the 

“back” face of Tim10 (blue/white/red surface). The most conserved residues  in 

contact across this interface are aromatics (Tim9-F29, Tim-F26 and Tim10-Y58), 

which pack against one of the two strictly conserved disulphide bonds in Tim10 (C54-

C29) (B) Flipped 180o, the view of the interface where the “back” face of Tim9 

(transparent grey cylinders) contacts the “front” face of Tim10 (blue/white/red 

surface). In addition to the ionic interactions between Tim10-D52/Tim9-R62 and 

Tim10-E47/Tim9-K55, the conserved L43 of Tim10 packs against the acyl chain 

region of Tim9-K55 which “threads” through the loop of Tim10. The sidechains of 

the most conserved residues (>3.46 bits, 80th percentile) in Tim9 are shown as orange 

spheres (C) The conserved core residues of the Tim9/Tim10 complex are also 

partially exposed on the top surface of the hexamer. Residues from Tim9 (grey labels) 

and Tim10 (orange labels) with side-chains contributing to the conserved patches are 

identified. 

 

Figure 3. Conserved residues in the Tim10 tentacles. (A) Side view of the 

Tim9/Tim10 complex, with Tim9 subunits shaded dark grey and Tim10 shaded 

orange-gold. The length for which each of the “tentacles”, formed from the N-

terminal helices of the three Tim10 subunits, can be resolved varies in the crystal 

structure (Webb et al. 2006). The longest tentacle yielded electron density to define 

the structure of almost the full N-terminal segment. (B) The conserved residues in the 

first twenty residues of the N-terminal segments are mapped onto each of the three 

Tim10 subunits.  



 

Figure 4. Substrate recognition by Tim13 and Tim8. Thirteen-mer peptide assemblies 

(see Methods) representing AAC (the Aac2 protein from S. cerevisiae) (left) and 

Tim22 from S. cerevisiae (right) were screened with purified Tim13 (upper panel) or 

Tim8 (lower panel) proteins. Bound protein was blotted to PVDF membranes and 

probed with antibodies that detect Tim13 or Tim8. Immunolocalisation of the 

respective small TIMs shows the pattern of peptides to which they bind, and the 

immunoblots are shown along with a graphical representation of relative amount of 

binding to each peptide spot. The positions of predicted transmembrane domains and 

loops, according to peptide number, are indicated below the graphs. 

 

Figure 5. Depletion of TIM function leads to mitochondrial morphology defects and 
cell death in T. brucei. (A) Growth curves in the absence (-Tet) and presence (+Tet) 

of tetracycline of representative clonal T. brucei RNAi cell lines. Cell growth stops 50 
hours after the addition of the tetracycline inducer. (B) Analysis of mitochondrial 

morphology in uninduced (0h) and induced (72h) TIM translocase core Tb11.01.4870 
and Tim8-13 RNAi cell lines using immunofluorescence. Upper panel, Nomarski 

image. Lower panel, immunofluorescence staining with Hsp60 antiserum (red) and 
DAPI stain for nucleus (blue). Bar = 20 µm. (C) Time course of appearance and 

extent of mitochondrial fragmentation observed in induced TIM translocase core 

Tb11.01.4870 and Tim8-13 RNAi cell lines (n > 200 cells for each time point). 

 



TABLE LEGEND 

 

Table 1. Patterns of distribution of the small TIMs in eukaryotes. Hidden Markov 

models were built to describe Tim9, Tim10, Tim8 and Tim13 and used to search 

genome sequence data. The organisms listed each have completely sequenced 

genomes. The column “other” includes the Tim12 protein from yeast and humans, 

both of which have been shown to be located on the surface of the TIM22 translocase 

(8 - weak similarity to Tim8, 9 - strong similarity to Tim9, 10 - weak similarity to 

Tim10, 13 - weak similarity to Tim13).  
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 Tim9 Tim10 Tim8 Tim13 other 
Fungi 
Saccharomyces cerevisiae O74700 P87108 P57744 P53299 P3283010

Neurospora crassa Q8J1Z1 Q9C0N3 Q9Y8C0 Q7SBR3 none 
Eremothecium gossypii Q757S0 Q759W7 Q75DU7 Q75F72 AAS5160910

Encephalitozoon cuniculi none none none none none 
Animals 
Homo sapiens Q9Y5J7 P62072 O60220

Q9Y5J9
AAF15101
AAF15102 Q9Y5J69

Mus musculus Q9WV98 P62073 Q9WVA2
P62077

P62075
BAB22536 Q9WV969

Danio rerio Q9W762 Q6DI06 Q6DEM5 Q6DGJ3 Q568N4
Caenorhabditis elegans Q17754 Q9Y0V6 Q9N408 O45319 Q9Y0V29

Drosophila melanogaster Q9VYD7 Q9W2D6 Q9Y1A3 Q9VTN3 Q9Y0V39

Plants 
Arabidopsis thaliana Q9XGX9 Q9ZW33 Q9XGY4 Q9XH48 none 
Oryza sativa Q9XGX7 Q7XI32 Q6Z1H2 Q7XUM9 none 
Protists 
Dictyostelium discoideum EAL71103 EAL64919 none none none 
Plasmodium falciparum Q8ID24 Q8I5W2 Q8ILN5 Q8I500 Q8I47213

Plasmodium bergheii Q4YMY2 Q4YCZ6 Q4Z7J2 Q4Z4Q5 Q4Z7B613

Plasmodium chabaudi Q4XVQ0 Q4XF82 CAH85260 Q4XDV1 Q4Y1F08

Plasmodium yoelli Q7RCS2 Q7RBI2 Q7R8G4 Q7RH88 Q7RFP38

Theileria parva EAN34037 EAN34123 EAN30577 none 
Cryptosporidium parvum none none EAK90166 none 
Cryptosporidium hominis none none  EAL36478 none 
Leishmania major  CAJ03937 CAJ05328 CAJ04425 none 
Trypanosoma brucei AAX69615 AAX80231 EAN79502 none 
Trypanosoma cruzi EAN98593 EAN94952 EAN92571 none 
Trichomonas vaginalis none none none none none 
 
 
 
Hidden Markov models were built to describe Tim9, Tim10, Tim8 and Tim13 and used 
to sift the data in UniProt. The listed organisms have complete genome sequences 
represented in UniProt.  
 
8 -  weak similarity to Tim8 
9 - strong similarity to Tim9, functional studies reveal the protein to be located on the 

inner membrane and part of the TIM22 complex in humans (ref)
10 -  weak similarity to Tim10, functional studies show the protein to be located on the 

inner membrane and part of the TIM22 complex in yeast (ref) 
13 -  weak similarity to Tim13 
 

http://www.ncbi.nlm.nih.gov.ezproxy.lib.unimelb.edu.au/entrez/viewer.fcgi?db=protein&val=12230137
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=12230145
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=12230143
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=1723732
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=417316
http://www.ncbi.nlm.nih.gov.ezproxy.lib.unimelb.edu.au/entrez/viewer.fcgi?db=protein&val=74629766
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=30316117
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=12230196
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=74628943
http://www.ncbi.nlm.nih.gov.ezproxy.lib.unimelb.edu.au/entrez/viewer.fcgi?db=protein&val=74693696
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=59798953
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=74695505
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=74695950
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=44982300
http://www.ncbi.nlm.nih.gov.ezproxy.lib.unimelb.edu.au/entrez/viewer.fcgi?db=protein&val=12230191
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http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=6524631
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http://www.ncbi.nlm.nih.gov.ezproxy.lib.unimelb.edu.au/entrez/viewer.fcgi?db=protein&val=12230178
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=49065658
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=12230180
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=49065659
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=49065654
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=12833472
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