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ABSTRACT

The mitochondrial inner and outer membranes are composed of a variety of integral 

membrane proteins, assembled into the membranes post-translationally. The small TIMs are a 

group of ~10 kDa proteins that function as chaperones to ferry imported proteins across the 

mitochondrial intermembrane space to the outer and inner membranes. In yeast there are five 

small TIM proteins: Tim8, Tim9, Tim10, Tim12 and Tim13, with equivalent proteins 

reported in humans. Using hidden Markov models we find that many eukaryotes have 

proteins equivalent to the Tim8 and Tim13 and the Tim9 and Tim10 subunits. Some

eukaryotes provide “snapshots” of evolution, with a single protein showing the features of 

both Tim8 and Tim13, suggesting that a single progenitor gene has given rise to each of the 

small TIMs through duplication and modification. We show that no “Tim12” family of 

proteins exist, but rather that variant forms of the cognate small TIMs have been recently 

duplicated and modified to provide new functions: the yeast Tim12 is a modified form of 

Tim10, while in humans and some protists variant forms of Tim9, Tim8 and Tim13 are found 

instead. Sequence motif analysis reveals acidic residues conserved in the Tim10 substrate-

binding tentacles, whereas more hydrophobic residues are found in the equivalent substrate-

binding region of Tim13. The substrate-binding region of Tim10 and Tim13 represents an 

independent domain, the acidic domain from Tim10 can be attached to Tim13 converting the 

Tim8/Tim13 complex so that the Tim9/Tim10 complex becomes dispensable. The conserved

features in the Tim10 and Tim13 subunits provide distinct binding surfaces to accommodate 

the broad range of substrate proteins delivered to the mitochondrial inner and outer 

membranes.
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INTRODUCTION

Mitochondria are found ubiquitously in eukaryotes where they house 10-20% of the cellular 

proteome (Sickmann et al. 2003; Gabaldon and Huynen 2004; Ohlmeier et al. 2004; Prokisch 

et al. 2004; Reichert and Neupert 2004), with up to a thousand proteins of varying 

biochemical properties having to be imported into the organelle and sorted to one of the four 

sub-mitochondrial compartments. A series of molecular machines in the outer and inner 

mitochondrial membranes are responsible for the import and assembly of mitochondrial

proteins (Pfanner and Geissler 2001; Herrmann and Neupert 2003; Koehler 2004a; Pfanner et 

al. 2004; Dolezal et al. 2006). These machines: the TOM complex, SAM complex, TIM23 

complex, TIM22 complex and OXA1 complex, are composed of forty or more subunit parts 

that function as distinct modules. Some of the modules found in the yeast protein import

machinery are conserved in animals and plants, while others seem to be more restricted in 

their distribution suggesting they have arisen more recently (Dolezal et al. 2006). 

Comparative analysis of the protein import machinery from various eukaryotic groups 

provides a powerful means to address how the component parts combine to form functional

machines, and how the machines handle the broad range of substrate proteins imported into 

mitochondria.

The several hundred membrane proteins imported into mitochondria enter an aqueous 

channel in the TOM complex, enabling their translocation across the outer membrane (Brix, 

Dietmeier, and Pfanner 1997; Dietmeier et al. 1997; Schatz 1997; Pfanner et al. 2004). Those 

proteins destined for assembly into the outer membrane are then transferred to the SAM 

complex. Most of the proteins destined for the inner membrane, including the abundant 

metabolite carrier proteins, are transferred instead to the TIM22 complex. It remains unclear

how a given substrate protein is recognized for specific delivery to either the SAM or TIM22 

complex, but it is known that both transfer reactions require the assistance of the small TIM 

chaperones (Rehling et al. 2003; Koehler 2004a; Koehler 2004b; de Marcos-Lousa, Sideris, 

and Tokatlidis 2006). The small TIMs are a group of ~10 kDa proteins originally 

characterised by a unique arrangement of cysteines: two sequence motifs of CX3C separated

by 11-16 residues (Koehler 2004b). This superfamily of proteins, referred to as zf-

Tim10DDP (PF02953), is collected together as a single group by the Conserved Domain

Database (Marchler-Bauer et al. 2005) because of the common features centred around the 

conserved CX3C sequences. The cysteines contribute to two pairs of disulfide bonds that 

maintain the structural integrity of the proteins (Allen et al. 2003; Webb et al. 2006).
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In yeast there are five members of the zf-Tim10DDP family: according to their approximate

molecular weight in kDa these proteins are called Tim8, Tim9, Tim10, Tim12 and Tim13. 

Three of these, Tim9, Tim10 and Tim12 are essential for cell viability while the genes

encoding the other two, Tim8 and Tim13, can be deleted without obvious effects on cell 

growth (Koehler et al. 1999).  Tim9 and Tim10 combine to form a 3 3 hexamer, and the 

function of this Tim9/Tim10 complex has been studied in detail (Koehler et al. 1998b; Adam

et al. 1999; Luciano et al. 2001; Curran et al. 2002a; Curran et al. 2002b; Truscott et al. 2002; 

Lu et al. 2004; Lu and Woodburn 2005; Webb et al. 2006). The essential Tim12 sits as a 

peripheral subunit on the inner membrane TIM22 translocase, where it appears to help unload 

substrates delivered by the Tim9/Tim10 complex (Koehler et al. 1998a; Sirrenberg et al. 

1998; Bauer et al. 1999; Endres, Neupert, and Brunner 1999; Muhlenbein et al. 2004). Tim8

and Tim13 form a second 3 3 hexameric complex which appears to perform analogously to 

the Tim9/Tim10 complex in delivering substrate proteins to the outer and inner membranes

(Koehler et al. 1999; Curran et al. 2002b; Davis et al. 2000). This redundancy of function and 

the non-essential nature of the genes encoding Tim8 and Tim13 leaves open the question of 

why these two small TIMs are needed in yeast.

Due to the sequence conservation in the small TIMs, BLAST searches with the yeast 

sequences revealed corresponding human proteins. The Tim9/Tim10 complex from humans

is involved in inner membrane protein insertion (Bauer et al. 1999; Muhlenbein et al. 2004) 

and its crystal structure was recently solved (Webb et al. 2006). It consists of a ring-shaped

hexamer formed from alternating Tim9 and Tim10 subunits. The Tim8/Tim13 complex is 

also found in humans and a mutation in one of the genes encoding Tim8 leads to Mohr-

Tranebjaerg syndrome (Koehler et al. 1999; Bauer and Neupert 2001; Roesch et al. 2002).

We have taken a comparative genomics approach using hidden Markov models (HMMs) to 

comprehensively screen for small TIM sequences and to discriminate conserved features 

within the small TIM family. We have assessed the role of the small TIM proteins in delivery

of substrates to the mitochondrial membranes, addressing three questions. Firstly, does a 

signature motif exist that defines each of the five small TIM sub-families? Secondly, how do 

these defining motifs relate to the three dimensional structure of the small TIM proteins and 

their capability for recognition and binding of substrates? Thirdly, can these motifs be used to 
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determine whether or not all organisms encode and rely on Tim12 and both the Tim9/Tim10

and Tim8/Tim13 complexes?

The comprehensive sequence analysis made possible with the hidden Markov models shows 

some eukaryotes have a reduced number of small TIMs, with only two or three genes present. 

While some apicomplexan parasites like the malaria-causing Plasmodium have clear and 

distinct Tim9, Tim10, Tim8 and Tim13 subunits, the genome of a related apicomplexan,

Theileria parva, encodes a Tim9 and a Tim10 and then has a third gene that encodes a hybrid 

Tim8-Tim13 protein while other apicomplexans, in the genus Cryptosporidium, have only the 

hybrid Tim8-Tim13 protein. This work suggests that the small TIM chaperones were present 

in the last common ancestor to the eukaryote lineage, and that distinct features in the four 

types of small TIMs are critical: they have been maintained, or independently evolved, to be 

present in diverse eukaryotes. Distinct features identified in substrate-binding domains of the 

Tim10 and Tim13 subunits provides for the broadest range of substrate proteins to be 

collected and ferried across the mitochondrial intermembrane space. 
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MATERIALS AND METHODS

Hidden Markov models 

The initial set of small TIM sequences gathered from BLAST searches were aligned using 

ClustalX (Jeanmougin et al. 1998) and the alignment was used to generate a Neighbor-

Joining phylogenetic tree that clustered the sequences into four main groups, with each of the 

cognate small TIMs from yeast sitting in one of the four groups. The sets representing Tim8,

Tim9, Tim10, and Tim13 contained 16, 15, 13, and 9 sequences respectively.  The grouped 

sequences were then used to construct HMMs which in turn were used to search the UniProt 

database for related proteins. 

The HMMs were built with the program HMMER 2.3.2 (Durbin 1998). The best multiple

alignment for each family of sequences was obtained with ClustalW (Thompson, Higgins, 

and Gibson 1994) and t-coffee (Notredame, Holm, and Higgins 1998). The two alignment

programs produced different best alignments, and we built two sets of HMMs (corresponding

to ClustalW and t-coffee alignments) for each family of sequences (Tim8, Tim9, Tim10 and 

Tim13).  The resulting HMMs were used to scan UniProt database release 7.2 (Swiss-Prot

release 49.2 and TrEMBL release 32.2) (Bairoch et al. 2005) and also to scan protein data 

sets from the Trichomonas vaginalis and Encephalizoon cuniculi genomes individually, as 

previously described (Dolezal et al. 2006). The results of all HMM searches were manually

examined.  The sequences used to construct the HMM were detected from within the UniProt 

search with scores better than E = 10-40.  Novel sequences retrieved with scores E< 10-5 were 

proteins of 50-100 residues that carry the twin CX3C motif and were considered members of 

the small TIM family.  Sequences which scored poorer than E = 10-4 were larger than 100 

residues, did not carry the twin CX3C motif, and were therefore discarded.  Many of these 

were proteins of known function and have predicted (helix-rich) coiled-coil domain

structures.

Motif analysis to distinguish four small TIM families 

Proteins deemed to belong to one of the four small TIM families were used to define 

sequence motifs. Note, the hybrid Tim8-Tim13 sequences were not included for motif

analysis. The program MEME version 3.5.2 (Bailey and Elkan 1994) was used and in the first 

step we searched each given protein family for the single strongest motif present in the

sequences, the rationale being that if all sequences were correctly assigned to a small TIM 

family they should have at least one common motif. Consequently, any sequence which did 
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not have this motif was removed from further analysis. This resulted in the removal of one 

sequence from the initial Tim8, Tim9 and Tim10 sets. The resulting Tim8, Tim9, Tim10, and 

Tim13 sets containing 33, 40, 33 and 25 sequences, respectively, were used in further motif 

analysis. In the second step, we checked for possible motifs that occur as repetitions (MEME 

'anr' distribution option). No such motifs were found in any of the four protein families.

Finally, the three most prominent motifs in each family were searched for. The motifs were 

constrained to be between 5 and 128 residues, with the E-value not to exceed 1e-10. Motifs 

that were present in all sequences of a sub-family are represented in the logos in Figure 1 and 

have the following characteristics: Tim9 Motif (E-value = 10-1115), Tim10 Motifs 1 and 2 (E-

values = 10-543 and = 10-448), Tim8 Motifs 1 and 2 (E-values = 10-400 and = 10-211), Tim13 

Motifs 1 and 2 (E-value = 10-396 = 10-335). No other characteristic motifs were found. From

past experience we know that the output of a MEME motif search (including the exact 

beginning or end of a motif) may be affected by input parameters (V. Liki , unpublished). To 

test for reliability in the predicted motifs, we ran five repeats of motif elucidation with 

different input parameters. For each family of sequences the resulting motifs were confirmed.

In order to map the critical residues within the motifs onto the crystal structure of Tim9/10, 

the information content (Shannon uncertainty) (Schneider and Stephens 1990) was calculated 

for each column in seperate multiple alignments of Tim9 and Tim10 using the Biopython 

tools (http://biopython.org) and assuming a uniform background symbol distribution. These 

values were mapped to the coordinates of the Tim9/Tim10 heterohexamer crystal structure

(pdb accession 2BSK) (Webb et al. 2006) using the occupancy field of the pdb format and 

analysed using VMD (version 1.8.4) (Humphrey, Dalke, and Schulten 1996). 

RNAi knockdowns of Tim8-13 and TIM translocase core in Trypanosoma brucei 

RNAi-mediated ablation of the T. brucei Tim8-13 and TIM translocase core was performed

using stem loop constructs containing the puromycine resistance gene as described (Bochud-

Allemann and Schneider 2002). The constructs correspond to the sequence of the entire open-

reading frame of T. brucei Tim8-13 and TIM translocase genes. Transfection of T. brucei

(strain 29-13), selection with antibiotics, cloning and induction with tetracycline were done as 

described (McCulloch et al. 2004).

Binding assays with the yeast Tim8/Tim13 complex 
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PVDF membranes of 13mer peptides with a ten amino acid overlap were synthesised by 

automated spot synthesis (JPT Peptide Technologies, Berlin, Germany). Binding of Tim13

was performed as described (Vergnolle et al. 2005) with the following modifications: Tim13

antibodies were used to detect bound proteins, and signals were quantified using ImageQuant

software (Molecular Dynamics). Transmembrane segments were predicted for Tim22 using 

DAS (Cserzo et al. 1997) and multiple sequence alignments as previously described (Chan et 

al. 2006) and for Aac2 by alignment with the bovine AAC crystal structure (Pebay-Peyroula 

et al. 2003).
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RESULTS

There are four, distinct small TIM families: Tim8, Tim9, Tim10 and Tim13

Tim9, Tim10, Tim8, Tim13 and Tim12 were first identified in yeast (Jarosch et al. 1996; 

Koehler et al. 1998b; Sirrenberg et al. 1998) and a thorough characterization of the homologs 

of these proteins in humans has been done (Bauer et al. 1999; Jin et al. 1999). Starting with 

the functionally characterised small TIMs from yeast and humans, BLAST searches were 

used to gather an initial set of 53 small TIM sequences. From a phylogenetic analysis, these 

cluster into four groups with each of the groups containing at least one of the cognate small

TIMs from yeast (data not shown). The Tim12 and Tim10 sequences from yeast sit in a 

single group. 

The grouped sequences were then used to construct four hidden Markov models, one 

describing each of the small TIM sub-families. The HMMs were used to extract related

sequences from UniProt 7.5 sequence data.  Those sequences that had been used to construct 

the HMM were recognised in UniProt with scores of E 10-40. This then constitutes a “perfect

match” in this search. All of the novel sequences retrieved with scores above E = 10-5 are 

proteins of 50-100 residues, carry the twin CX3C motif and were therefore collected as

members of the small TIM family. The 141 small TIM sequences discovered here come from

a broad range of eukaryotes, but none were found in prokaryotes. A number of complete

genome sequence data sets are present in UniProt, and the small TIM proteins discovered in 

these organisms are listed in Table 1.

Each of the four small TIM families was then analysed for motifs, in order to determine those 

features that distinguish each of the four families. The motifs are represented in Figure 1. In 

all Tim9 sequences, a single motif exists with fifteen residues situated between the two CX3C

sequences. Numerous key residues in the motif are highly conserved as judged by the height 

of the character in the sequence logo (Figure 1). In the other TIM families there are two 

motifs, which are broken by the insertion of a variable number of residues: in Tim10, there 

are 15-21 residues between the twin CX3C sequences, in Tim8 there are 14-18 residues while 

the Tim13 sequences have 11-14 residues inserted between the twin CX3C sequences. The 

region between the twin CX3C sequences is known to form a structured loop (Webb et al. 

2006), which could accommodate the variable number of residues. The conserved, diagnostic 

motifs found here include and extend well beyond the twin CX3C sequences, with the key 

residues conserved within each motif distinguishing the four families. For example, there are 
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several conserved acidic residues in the N-terminal region of all the Tim10 sequences that are 

not found in the other small TIMs. 

Tim12-type proteins are the result of recent gene duplication events 

While only four characteristic families of small TIMs can be recognised, in many organisms

for which complete sequence data is available, five distinct small TIM proteins were found: 

one corresponding to each of the cognate families and a fifth isoform that fits less well to the 

criteria shown in any of the conserved motifs. The best studied of these is the yeast Tim12, a 

peripheral component of the TIM22 complex (Koehler et al. 1998a; Sirrenberg et al. 1998). 

Tim12 appears to serve as a docking point for the substrate-Tim9/Tim10 complex. Yeast 

Tim12 matches the Tim10 motif, though poorly compared to bona fide Tim10 homologues. 

A peripheral small TIM component of the TIM22 complex has also been described in humans

(Muhlenbein et al. 2004), but this small TIM (Q9Y5J6) best matches the sequence criteria of 

the Tim9 HMM (E = 10-46) rather than the Tim10 HMM (E = 6.10-5). Thus it seems that the 

TIM22 complex subunit can be of either type of small TIM. Furthermore, of the four species 

of Plasmodium for which complete genome data are available, two have a variant TIM that 

matches the Tim8 HMM while two species have a variant that matches the Tim13 HMM (E ~ 

10-5 to10-8 in all cases). This would suggest that the acquisition of a fifth, “Tim12” type, 

subunit might have occurred relatively recently and have come about independently in 

various lineages of eukaryotes. In keeping with this proposal plants, filamentous fungi and 

several, diverse groups of protists have no apparent variant form of small TIM available to 

fulfil this function. Presumably in these organisms the import pathway has evolved such that 

substrate-loaded small TIM complexes can dock to the TIM22 complex directly, without the 

assistance of a pre-bound Tim12 subunit.

Mapping the conserved residues onto the structural framework of the Tim9/Tim10 complex 

The structure of the Tim9/10 complex from humans was recently solved by X-ray 

crystallography (Webb et al. 2006). This provides a framework to analyse the conserved 

features of each of the small TIMs. Many of the highly conserved residues pinpointed in the 

motif analysis are involved in forming contacts between the Tim9 and Tim10 subunits. Two 

independent types of Tim9-Tim10 interface alternate in the hexamer. In one, F29 and F36 of 

Tim9 pack against side chains of Y58, K32 and the C54-C29 disulphide of Tim10 (Figure 

2A), and a conserved ion pair is formed between E45 of Tim9 and K57 of Tim10. In the other 

interface, the most highly conserved contacts are the inter-subunit ion pairs D52 
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(Tim9)…R62 (Tim10), and E47 (Tim10)…K55 (Tim9) (Figure 2B). These molecular

interfaces are thus strong but potentially labile, benefiting a chaperone function. In short,

conserved residues on either face of Tim9 and Tim10 subunits are critical to hexamer

assembly.

As a result of these inter-subunit contacts, the flat or ‘upper’ face of the hexamer has a highly 

conserved surface (Figure 2C). The conserved patches are discontinuous due to non-

conserved sequences in the loop between the twin CX3C motifs in each subunit. These ‘cys-

loops’ divide the conserved surface into two patches: the first comprising Tim10 residues 

K32, G46, E47, C33-C50, R53 and Tim9 residues F36 and K55. A second, smaller, patch 

forms from Tim9 residues E45 and C32-C48. Most of the conserved residues are involved in 

contacts that determine the conformation of the cys-loops, and hence the surface 

complementarity of Tim9 and Tim10 subunits. The cysteine residues in the twin CX3C motifs

are invariant, and form disulphides that constrain the ends of each helix between the cys-

loops, possibly also promote the propeller topology of the assembly. Conservation of the 

upper surface makes it an attractive proposition for docking to other components of the 

import machinery, though the underlying reason for conservation of these residues is in 

maintaining the structural integrity of the hexameric assembly prior to substrate binding. The 

equivalent of E45 in the yeast Tim9, for example, has been implicated in formation of a 

stable hexamer (Leuenberger et al. 2003).

Substrate-binding regions in the Tim9/Tim10 and the Tim8/Tim13 complexes 

When Tim10 is purified in isolation from Tim9, it exists in a small soluble form that might be 

either a monomer or dimer (Vial et al. 2002; Webb et al. 2006). The purified Tim10 subunit 

binds the inner membrane substrate AAC in a manner similar to the Tim9/Tim10 complex, 

whereas Tim9 alone does not bind at all (Vergnolle et al. 2005).  To test whether either Tim8

or Tim13, or both, subunits are responsible for binding substrate proteins, a cellulose filter

carrying 103 peptides representing the ADP/ATP carrier protein (AAC), a substrate of the 

small TIM chaperones, was incubated with purified Tim8 or Tim13. A discrete set of spots, 

highlighting the peptides bound by Tim13, can be seen on the filter (Figure 3A, upper panel). 

The peptides bound by Tim13 correspond to the hydrophobic transmembrane domains of 

AAC. These same regions of AAC are bound by Tim10 and the native Tim9/Tim10 complex

(Curran et al. 2002a; Vasiljev et al. 2004; Vergnolle et al. 2005).
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Binding of Tim8 to the same filter was barely detectable (Figure 3A, lower panel), suggesting 

Tim13 functions as the substrate sensor in the Tim8/Tim13 complex. Likewise, using a 

cellulose filter carrying peptides from the inner membrane protein Tim22, the Tim13 subunit 

binds to discrete peptides on the membrane while Tim8 bound only weakly to one peptide 

spot (Figure 3B). As is the case for its binding to AAC, Tim13 binds peptides corresponding 

to the predicted transmembrane regions of the Tim22 substrate. Tim10 and Tim13 therefore

act as substrate-binding subunits for their respective complexes, by binding to hydrophobic 

transmembrane segments of their substrate proteins. While the capacity for binding 

unstructured peptides segments as revealed by peptide-filter assays can be modified in vivo,

through partial folding of the substrate or by competition between the Tim9/Tim10 and

Tim8/Tim13 complexes, these results make clear that the Tim10 and Tim13 subunits are 

capable substrate-binding subunits. 

Motif analysis described a highly conserved N-terminal region in both Tim13 and Tim10

(Figure 1). The N-terminal residues of Tim10 featuring in this motif are required for substrate 

binding (Vergnolle et al. 2005) and form three “tentacles” extending down from the inner 

ring of helices in the Tim9/Tim10 hexamer (Webb et al. 2006). Mapping the conserved 

residues from the Tim10 motif onto the structure (Figure 4A) suggests the acidic region does 

not make contact with neighbouring Tim9 subunits. Given that this N-terminal domain of 

Tim10 is apparently structurally independent of the rest of the complex (Vial et al. 2002; Lu 

et al. 2004; Webb et al. 2006), it should be possible to graft the substrate-binding domain in 

place of the equivalent substrate-binding region of the Tim13 subunit, and convert 

Tim8/Tim13 to a complex that binds the substrates of Tim9/Tim10. To test this proposition, 

the N-terminal residues of Tim13 were replaced with those of Tim10 to create the fusion

protein Tim1310 (Figure 4B). Conserved acidics (D31 in Tim10 and E48 in Tim13) sit nine 

residues N-terminal to the first cysteine in each protein, and this position was used as 

“splicing” site. A single-copy plasmid driving expression of Tim1310 was transformed into 

tim10ts yeast cells. The tim10ts mutants carry a destabilising mutation in the tim10 gene and at 

37oC the expression of Tim10 and Tim9 is inhibited (Koehler et al. 1998b). The cells die at 

37oC because there is at least one essential substrate of the Tim9/Tim10 complex that can not 

be carried by the Tim8/Tim13 complex. The tim10ts cells are rescued by expression of 

Tim1310 (Figure 4B) demonstrating that Tim1310 can account for the essential function of

Tim10.
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Organisms lacking a Tim8/Tim13 complex? 

Some organisms appear to lack genes that would encode Tim8 and Tim13 family members.

Dictyostelium discoideum is a case in point where very clear Tim9 and Tim10 subunits are 

found while no other small TIM sequences are present in the completely sequenced genome

(Table 1). Further species of eukaryotes for which complete genome data is available also 

lack Tim8 and Tim13 proteins. However  Theileria parva, Leishmania major, Trypanosoma 

cruzi and Trypanosoma brucei show intriguing sequences that might represent ancestral-type

composite Tim8-13 proteins.

The kinetoplastida represents some of the earliest diverging forms of eukaryotes and include 

the human pathogens L. major, T. cruzi and T. brucei. Each of these organisms has three 

small TIMs. In T. brucei the first TIM matches both the Tim9 model and Tim10 model (E = 

10-6, E = 2.10-7, respectively) and the second protein specifically matches the Tim10 HMM 

(E = 2.10-5). The third sequence has limited conservation to any of the four TIM families, but 

conserved residues within the N-terminal half of the protein most closely match the 

signatures of Tim13, and conserved residues within the C-terminal half most closely match

the signatures of Tim8.

Little is known about the protein import apparatus in the kinetoplastid mitochondrion.

However, a few of the most conserved components of the protein import machinery have 

been annotated within the completely sequenced genomes (El-Sayed et al. 2005) including 

the inner membrane translocase Tb11.01.4870, a member of the Tim17/Tim22/Tim23 family

of proteins (PF02466) that would serve as the core of the inner membrane (TIM) protein 

translocase. Despite having only one Tim22/Tim23 translocase and only three small TIMs, 

the overall pathway for import of carrier proteins must be conserved between humans and 

Leishmania as a mammalian carrier protein is imported into mitochondria of transfected L.

major promastigotes, such that the carrier  is functional and represented 4.7% of the total 

mitochondrial protein (Alvarez-Fortes et al. 1998). 

Depletion of this protein by RNAi in cultured procyclic form parasites gives a mitochondrial

defect, with the normally reticular mitochondrion becoming a globular mass as judged from

immunofluorescent staining of the mitochondrial matrix protein Hsp60 (Figure 5B). The 

defect, seen in 60-75% of cells after 72 hours of treatment (Figure 5C), might reflect the 
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paucity of protein insertion into the mitochondrial membranes, and is distinct from the 

morphology after RNAi treatment of other essential proteins (Esseiva et al. 2004; Smid et al. 

2006). Over the same timecourse, RNAi treatment to deplete the Tim8-13 of T. brucei yields 

the same growth phenotype and mitochondrial defect, (Figure 5B, 5C) demonstrating that this 

small TIM protein functions as a crucial component in the mitochondria of these 

kinetoplastids.

Complete genome sequence data is also available for three groups of apicomplexan parasites, 

seven species in all from Plasmodium, Cryptosporidium and Theileria. Cryptosporidium

parvum and Cryptosporidium hominis have only relic mitochondria, the mitosome, with a 

greatly reduced set of proteins targeted to this organelle (Riordan et al. 2003; Putignani et al. 

2004; Slapeta and Keithly 2004; Henriquez et al. 2005); the genomes of these organisms

encode only one small TIM, which has the characteristics of both Tim8 and Tim13 (Table 1). 

In Theileria parva, three proteins are encoded: the first matches the Tim9 HMM (E = 10-41)

and the second matches the Tim10 HMM (E = 9. 10-9). The third small TIM from T. parva

matches both the HMM for Tim13 (E = 6. 10-7) and the HMM for Tim8 (E = 10-41). In the 

genome sequence of the four diverse species of Plasmodium, four cognate small TIMs were 

detected. Each is remarkably similar to the Tim9, Tim10, Tim8 and Tim13 proteins found in 

humans and yeast (Table 1).
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DISCUSSION

Protein import into mitochondria is a ubiquitous process in eukaryotes (Dolezal et al. 2006). 

From work done in yeast and in humans, the small TIMs function to collect substrate proteins 

from the TOM complex and deliver them to either the TIM22 complex in the inner

membrane or the SAM complex in the outer membrane. The TOM, TIM22 and SAM 

complexes appear to be present in all eukaryotic lineages (Dolezal et al. 2006), suggesting the 

mechanism for the import of membrane proteins follows is conserved.

Distinguishing roles for the Tim8/Tim13 and Tim9/Tim10 complexes 

Recent functional analyses rule out the prospect that the two small TIM complexes 

selectively deliver substrates to either the outer membrane or to the inner membrane

(Leuenberger et al. 1999; Davis et al. 2000; Curran et al. 2002b; Truscott et al. 2002; Hoppins 

and Nargang 2004). Both Tim8/Tim13 and Tim9/Tim10 complexes are required for the 

efficient delivery of outer membrane substrates (Hoppins and Nargang 2004; Wiedemann et 

al. 2004) and both complexes assist in the delivery of some inner membrane proteins. 

Recently, Davis et al. (2006) used cross-linking assays to comprehensively map the binding 

sites for Tim8/Tim13 and Tim9/Tim10 on the substrate protein Tim23. Specific sites were 

identified on Tim23 to which structurally-defined chaperone complexes bound: rather than 

general binding to hydrophobic regions of Tim23, specific cross-links indicated that 

Tim8/Tim13 bind to a few specific sites around the hydrophobic regions and that the 

Tim9/Tim10 complex binds selectively to other, specific sites around these hydrophobic 

regions on each molecule of substrate (Davis et al. 2006). Substrates like Tim23 and Tim22

are essential proteins, and in the absence of the (essential) Tim9/Tim10 complex the 

Tim8/Tim13 complex alone is insufficient to deliver some essential substrates to the inner

membrane.

The identity of the residues conserved in the tentacles of Tim10 and the equivalent region of 

Tim13 differ, with numerous alanine residues more diagnostic of the Tim13 substrate-binding 

segment. This provides distinct characteristics for the binding of substrates: we note that 

Tim13 binds best to the last transmembrane segment of the Tim22 substrate (Figure 4B) 

while Tim10 binds best to the second transmembrane segment (Vasiljev et al. 2004). For the 

AAC peptides, Tim13 binds best to those corresponding to transmembrane segments 2, 3 and 

5 while the Tim9/10 complex preferentially binds the peptides from transmembrane segments
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3 and 4 (Lu et al. 2004). Furthermore, in organello, Tim8/Tim13 and Tim9/Tim10 are 

positioned at precise locations along the imported substrate Tim23, demonstrating each

complex has preferred binding sites (Davis et al. 2006). The N-terminal tentacle of both 

Tim10 and Tim13 predict highly for propensity to form a coiled coil (Vergnolle et al. 2005; 

data not shown). This structural feature may also contribute to substrate binding; in coils, the 

chaperone’s -helical tentacles might shield hydrophobic helical segments of substrate.

In yeast, the TIM8 and TIM13 genes are not essential for cell viability and Dictyostelium

discoideum lacks Tim8 and Tim13 proteins. The Tim9 and Tim10 in D. discoideum are 

typical, with very high matches to the respective HMM (E = 10-35 and 10-44). This suggests

that a single small TIM complex is sufficient to mediate targeting of all membrane protein 

substrates in this organism. Too little is known about mitochondrial protein targeting in D.

discoideum yet, but its various substrate proteins might be less diverse in their sequence 

characteristics – which might in turn explain how a single small TIM complex could deliver 

all protein substrates to the outer and inner membranes. We suggest that the advantage to 

most organisms in having distinct Tim8/Tim13 and Tim9/Tim10 complexes comes in the 

increased range of substrates that can be bound; with the somewhat different substrate-

binding tentacles in the Tim13 and Tim10 subunits providing a broader capability for the 

substrates that can be recognized and delivered to the TIM22 and SAM complexes for 

assembly.

The primitive condition: acquisition and diversification of the small TIMs 

Our HMM analysis detects no proteins widely found in bacteria that might represent an 

ancestor chaperone from which the small TIMs have been derived, and we suggest that this 

family of chaperones was derived by the host cell in order to facilitate membrane protein 

transfer across the intermembrane space to the inner membrane; a pathway not pre-existing in 

the bacterial endosymbiont. The distinct “primitive” conditions, found in this study, each 

contribute something to a new understanding of how the small TIM proteins came about.

Firstly, some eukaryotes have no small TIMs, demonstrating that small TIMs are not

essential for mitochondrial biogenesis per se. During the first phases of mitochondrial

evolution, targeting of membrane proteins could have proceeded in the absence of small

TIMs. Encephalitozoon cuniculi is a microsporidian, and these organisms diverged early 
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from the animal and fungal lineage. Microsporidians have massively reduced genomes, and 

in particular have highly simplified mitochondria (referred to as “mitosomes”) with no 

electron transport chain, no ATP synthase and no mitochondrial metabolite carriers in their 

inner membranes (Katinka et al. 2001). The remnant mitochondrion in microsporidians

probably houses relatively few proteins apart from the simplified mitochondrial protein 

import apparatus and FeS cluster biosynthetic machinery, and therefore has relatively few 

proteins assembled into the mitosomal membranes. The widespread distribution of small TIM 

proteins in other eukaryotes suggests an early origin for the family and that microsporidians

have therefore lost their TIMs as part of their genome reduction. Microsporidians retain a 

Tom40 that must be assembled into the outer membrane and a vestigial SAM complex

(Katinka et al. 2001; Dolezal et al. 2006), and a Tim22/Tim23 that must be assembled in the 

inner membrane (Katinka et al. 2001), thereby demonstrating that even in the absence of 

small TIMs mitochondrial membrane protein assembly can be achieved. A similar situation is 

seen in Trichomonas vaginalis, which might also have a reduced membrane protein 

complexity and shows an absence of small TIMs. These eukaryotes provide proof-of-

principle for a situation in the earliest eukaryotes, when relatively few membrane proteins 

were coded on nuclear genes and in need of import.

The composite small TIM found in species of Cryptosporidium, Theileria, Leishmania and 

Trypanosoma, with the combined sequence characteristics of Tim8 and Tim13, supports our 

suggestion that a single gene might be enough to encode a functional chaperone. In particular, 

species of Cryptosporidium appear to have only this small TIM. Again, this represents proof-

of-principle that in simple eukaryotes a single gene encoding a suitable hybrid protein, such 

as Tim8-13, could form a functional chaperone.

We suggest that early eukaryotes carried a single small TIM, and that duplication of this gene 

gave rise to both the Tim10 and Tim13 type chaperones in the mitochondrial intermembrane

space. Further gene duplications, and co-dependent mutations created the Tim9- and Tim8-

type subunits, providing in each the necessary inter-subunit contacts to give rise to 

heteromeric complexes. Much more recently, gene duplication events have given rise to the 

“Tim12” subunit found attached to the TIM22 complex in the mitochondrial inner membrane.

The development of Tim9/Tim10 and Tim8/Tim13 complexes may have occurred very early, 

so that all eukaryotes inherited a full set of the four cognate small TIMs. Alternatively, some

of the duplication events may have occurred in parallel, in distinct lineages, with correlated 
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mutations giving similar outcomes in the Tim9 and Tim8 families. With such small, simply 

structured proteins, this alternative represents a reasonable proposition.
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FIGURE LEGENDS

Figure 1. Motif representation of the four cognate small TIM families. Sequence Logos

(Crooks et al. 2004) describing the conserved sequence motifs in each of the small TIMs are 

shown. These centre around the conserved twin CX3C residues. In the case of Tim10, Tim8

and Tim13 the motif is broken in two due to a variable number of residues in the interhelical

loop region. The highly conserved N-terminal region in the Tim10 sequences corresponds to 

the region of the protein that binds substrate (Vergnolle et al. 2005). 

Figure 2. Conserved residues sit at the inter-subunit contacts of the Tim9/Tim10 hexamer.

(A) This view shows the interface between the “front” face of Tim9 (cyan cylinders) and the 

“back” face of Tim10 (blue/white/red surface). The most conserved residues  in contact

across this interface are aromatics (Tim9-F29, Tim-F26 and Tim10-Y58), which pack against

one of the two strictly conserved disulphide bonds in Tim10 (C54-C29) (B) Flipped 180o, the 

view of the interface where the “back” face of Tim9 (transparent grey cylinders) contacts the

“front” face of Tim10 (blue/white/red surface). In addition to the ionic interactions between 

Tim10-D52/Tim9-R62 and Tim10-E47/Tim9-K55, the conserved L43 of Tim10 packs 

against the acyl chain region of Tim9-K55 which “threads” through the loop of Tim10. The 

sidechains of the most conserved residues (>3.46 bits, 80th percentile) in Tim9 are shown as 

orange spheres (C) The conserved core residues of the Tim9/Tim10 complex are also 

partially exposed on the top surface of the hexamer. Residues from Tim9 (grey labels) and 

Tim10 (orange labels) with side-chains contributing to the conserved patches are identified. 

Figure 3. Substrate recognition by Tim13 and Tim8. (A) Thirteen-mer peptide assemblies 

(see Methods) representing AAC (the Aac2 protein from S. cerevisiae) were screened with 

purified Tim13 (upper panel) or Tim8 (lower panel) proteins. Bound protein was blotted to 

PVDF membranes and probed with antibodies that detect Tim13 or Tim8. 

Immunolocalisation of the respective small TIMs shows the pattern of peptides to which they 

bind, and the immunoblots are shown along with a graphical representation of relative 

amount of binding to each peptide spot. The positions of predicted transmembrane domains 

and loops, according to peptide number, are indicated below the graphs. (B) Thirteen-mer

peptide assemblies (see Methods) representing Tim22 from S. cerevisiae were analysed as 

described above. 
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Figure 4. Conserved residues in the Tim10 tentacles. (A) The conserved residues in the first 

twenty residues of the N-terminal segments are mapped onto each of the three Tim10

subunits. The conserved acidic residues are labelled. Shaded purple are further conserved 

residues M18, L15, A11 and A10. (B) Wild-type or tim10ts yeast cells were transformed with 

a parent plasmid or with the plasmid encoding the Tim1310 fusion protein. Equal cell 

numbers were serially-diluted on plates that were then incubated at either the permissive

(25oC) or non-permissive (37oC) growth temperature.

Figure 5. Depletion of TIM function leads to mitochondrial morphology defects and cell 

death in T. brucei. (A) Growth curves in the absence (-Tet) and presence (+Tet) of 

tetracycline of representative clonal T. brucei RNAi cell lines. Cell growth stops 50 hours 

after the addition of the tetracycline inducer. (B) Analysis of mitochondrial morphology in 

uninduced (0h) and induced (72h) TIM translocase core Tb11.01.4870 and Tim8-13 RNAi 

cell lines using immunofluorescence. Upper panel, Nomarski image. Lower panel, 

immunofluorescence staining with Hsp60 antiserum (red) and DAPI stain for DNA (blue).

Bar = 20 m. (C) Time course of appearance and extent of mitochondrial fragmentation

observed in induced TIM translocase core Tb11.01.4870 and Tim8-13 RNAi cell lines (n > 

200 cells for each time point). 
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TABLE LEGEND

Table 1. Patterns of distribution of the small TIMs in eukaryotes. Hidden Markov models

were built to describe Tim9, Tim10, Tim8 and Tim13 and used to search genome sequence 

data. The organisms listed each have completely sequenced genomes. The column “other” 

includes the Tim12 protein from yeast and humans, both of which have been shown to be 

located on the surface of the TIM22 translocase (8 - weak similarity to Tim8, 9 - strong 

similarity to Tim9, 10 - weak similarity to Tim10, 13 - weak similarity to Tim13).
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Tim9 Tim10 Tim8 Tim13 other
Fungi
Saccharomyces cerevisiae O74700 P87108 P57744 P53299 P3283010

Neurospora crassa Q8J1Z1 Q9C0N3 Q9Y8C0 Q7SBR3 none
Eremothecium gossypii Q757S0 Q759W7 Q75DU7 Q75F72 AAS5160910

Encephalitozoon cuniculi none none none none none 
Animals
Homo sapiens Q9Y5J7 P62072 O60220

Q9Y5J9
AAF15101
AAF15102 Q9Y5J69

Mus musculus Q9WV98 P62073 Q9WVA2
P62077

P62075
BAB22536 Q9WV969

Danio rerio Q9W762 Q6DI06 Q6DEM5 Q6DGJ3 Q568N4
Caenorhabditis elegans Q17754 Q9Y0V6 Q9N408 O45319 Q9Y0V29

Drosophila melanogaster Q9VYD7 Q9W2D6 Q9Y1A3 Q9VTN3 Q9Y0V39

Plants
Arabidopsis thaliana Q9XGX9 Q9ZW33 Q9XGY4 Q9XH48 none
Oryza sativa Q9XGX7 Q7XI32 Q6Z1H2 Q7XUM9 none
Protists
Dictyostelium discoideum EAL71103 EAL64919 none none none 
Plasmodium falciparum Q8ID24 Q8I5W2 Q8ILN5 Q8I500 Q8I47213

Plasmodium bergheii Q4YMY2 Q4YCZ6 Q4Z7J2 Q4Z4Q5 Q4Z7B613

Plasmodium chabaudi Q4XVQ0 Q4XF82 CAH85260 Q4XDV1 Q4Y1F08

Plasmodium yoelli Q7RCS2 Q7RBI2 Q7R8G4 Q7RH88 Q7RFP38

Theileria parva EAN34037 EAN34123 EAN30577 none
Cryptosporidium parvum none none EAK90166 none
Cryptosporidium hominis none none EAL36478 none
Leishmania major CAJ03937 CAJ05328 CAJ04425 none
Trypanosoma brucei AAX69615 AAX80231 EAN79502 none
Trypanosoma cruzi EAN98593 EAN94952 EAN92571 none
Trichomonas vaginalis none none none none none 

Hidden Markov models were built to describe Tim9, Tim10, Tim8 and Tim13 and used 
to sift the data in UniProt. The listed organisms have complete genome sequences 
represented in UniProt.  

8 -  weak similarity to Tim8 
9 - strong similarity to Tim9, functional studies reveal the protein to be located on the 

inner membrane and part of the TIM22 complex in humans (ref)
10 -  weak similarity to Tim10, functional studies show the protein to be located on the 

inner membrane and part of the TIM22 complex in yeast (ref) 
13 -  weak similarity to Tim13 
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