4,560 research outputs found

    Laiduntarkkailu eräillä tiloilla Suomessa kesällä 1926

    Get PDF
    vokKirjasto Aj-kThe control of pastures on some farms in Finland (Suomi) in 192

    Laiduntarkastus eräillä tiloilla Suomessa kesällä 1925

    Get PDF
    vokKirjasto Aj-kThe control of pasture on some farms in Finland (Suomi) in 192

    Reducing the impact of radioactivity on quantum circuits in a deep-underground facility

    Get PDF
    As quantum coherence times of superconducting circuits have increased from nanoseconds to hundreds of microseconds, they are currently one of the leading platforms for quantum information processing. However, coherence needs to further improve by orders of magnitude to reduce the prohibitive hardware overhead of current error correction schemes. Reaching this goal hinges on reducing the density of broken Cooper pairs, so-called quasiparticles. Here, we show that environmental radioactivity is a significant source of nonequilibrium quasiparticles. Moreover, ionizing radiation introduces time-correlated quasiparticle bursts in resonators on the same chip, further complicating quantum error correction. Operating in a deep-underground lead-shielded cryostat decreases the quasiparticle burst rate by a factor fifty and reduces dissipation up to a factor four, showcasing the importance of radiation abatement in future solid-state quantum hardware

    Distorted Copulas: Constructions and Tail Dependence

    Get PDF
    Given a copula C, we examine under which conditions on an order isomorphism ψ of [0, 1] the distortion C ψ: [0, 1]2 → [0, 1], C ψ(x, y) = ψ{C[ψ−1(x), ψ−1(y)]} is again a copula. In particular, when the copula C is totally positive of order 2, we give a sufficient condition on ψ that ensures that any distortion of C by means of ψ is again a copula. The presented results allow us to introduce in a more flexible way families of copulas exhibiting different behavior in the tails

    Engineering the Controlled Assembly of Filamentous Injectisomes in E. coli K-12 for Protein Translocation into Mammalian Cells.

    Get PDF
    Bacterial pathogens containing type III protein secretion systems (T3SS) assemble large needle-like protein complexes in the bacterial envelope, called injectisomes, for translocation of protein effectors into host cells. The application of these molecular syringes for the injection of proteins into mammalian cells is hindered by their structural and genomic complexity, requiring multiple polypeptides encoded along with effectors in various transcriptional units (TUs) with intricate regulation. In this work, we have rationally designed the controlled expression of the filamentous injectisomes found in enteropathogenic Escherichia coli (EPEC) in the nonpathogenic strain E. coli K-12. All structural components of EPEC injectisomes, encoded in a genomic island called the locus of enterocyte effacement (LEE), were engineered in five TUs (eLEEs) excluding effectors, promoters and transcriptional regulators. These eLEEs were placed under the control of the IPTG-inducible promoter Ptac and integrated into specific chromosomal sites of E. coli K-12 using a marker-less strategy. The resulting strain, named synthetic injector E. coli (SIEC), assembles filamentous injectisomes similar to those in EPEC. SIEC injectisomes form pores in the host plasma membrane and are able to translocate T3-substrate proteins (e.g., translocated intimin receptor, Tir) into the cytoplasm of HeLa cells reproducing the phenotypes of intimate attachment and polymerization of actin-pedestals elicited by EPEC bacteria. Hence, SIEC strain allows the controlled expression of functional filamentous injectisomes for efficient translocation of proteins with T3S-signals into mammalian cells

    Computational Modeling of Silicate Glasses: A Quantitative Structure-Property Relationship Perspective

    Get PDF
    This article reviews the present state of Quantitative Structure-Property Relationships (QSPR) in glass design and gives an outlook into future developments. First an overview is given of the statistical methodology, with particular emphasis to the integration of QSPR with molecular dynamics simulations to derive informative structural descriptors. Then, the potentiality of this approach as a tool for interpretative and predictive purposes is highlighted by a number of recent inspiring applications

    Phage inducible islands in the gram-positive cocci

    Get PDF
    The SaPIs are a cohesive subfamily of extremely common phage-inducible chromosomal islands (PICIs) that reside quiescently at specific att sites in the staphylococcal chromosome and are induced by helper phages to excise and replicate. They are usually packaged in small capsids composed of phage virion proteins, giving rise to very high transfer frequencies, which they enhance by interfering with helper phage reproduction. As the SaPIs represent a highly successful biological strategy, with many natural Staphylococcus aureus strains containing two or more, we assumed that similar elements would be widespread in the Gram-positive cocci. On the basis of resemblance to the paradigmatic SaPI genome, we have readily identified large cohesive families of similar elements in the lactococci and pneumococci/streptococci plus a few such elements in Enterococcus faecalis. Based on extensive ortholog analyses, we found that the PICI elements in the four different genera all represent distinct but parallel lineages, suggesting that they represent convergent evolution towards a highly successful lifestyle. We have characterized in depth the enterococcal element, EfCIV583, and have shown that it very closely resembles the SaPIs in functionality as well as in genome organization, setting the stage for expansion of the study of elements of this type. In summary, our findings greatly broaden the PICI family to include elements from at least three genera of cocci
    corecore