10 research outputs found

    Impact of high temperature on sucrose translocation, sugar content and inulin yield in Cichorium intybus L. var. sativum

    No full text
    Background and aim Cichorium intybus is a biennal species storing inulin in taproot during the first year and flowering after vernalization. Heat impact on sugar distribution and inulin yield remains poorly documented. Methods Plants were cultivated under ambient or high (ambient+5 °C) temperature for 27 weeks. Plants were monthly harvested and morphological parameters, bolting rate, sugar translocation, soluble sugars and inulin content were determined.Results Heat reduced shoot and root growth and unexpectedly induced precocious bolting. It increased fructose contents in roots and leaves, increased root myo-inositol and reduced leaf sucrose content. At harvest, inulin content was higher in heat-treated than in control roots but total amount of inulin produced per plant was lower. Heat inhibited sugar translocation from leaves to secondary roots. Total soluble sugar content was lower in leaves but higher in roots of bolted plants compared to non-bolted ones. Bolting induced an increase in the mean degree of polymerization of inulin and root lignification. Conclusion High temperatures impaired inulin production as a result of root growth inhibition and reduced sugar translocation from the leaves to the roots. Heat induced precocious bolting on non-vernalized plants. Bolting reinforced root growth inhibition and thus inulin yield decrease

    CRISPR/Cas9-Engineered HLA-Deleted Glomerular Endothelial Cells as a Tool to Predict Pathogenic Non-HLA Antibodies in Kidney Transplant Recipients

    No full text
    International audienceBackground After kidney transplantation, donor-specific antibodies against human leukocyte antigen donor-specific antibodies (HLA-DSAs) drive antibody-mediated rejection (ABMR) and are associated with poor transplant outcomes. However, ABMR histology (ABMRh) is increasingly reported in kidney transplant recipients (KTRs) without HLA-DSAs, highlighting the emerging role of non-HLA antibodies (Abs). Methods W e designed a non-HLA Ab detection immunoassay (NHADIA) using HLA class I and II–deficient glomerular endothelial cells (CiGEnC Δ HLA) that had been previously generated through CRISPR/Cas9-induced B2M and CIITA gene disruption. Flow cytometry assessed the reactivity to non-HLA antigens of pretransplantation serum samples from 389 consecutive KTRs. The intensity of the signal observed with the NHADIA was associated with post-transplant graft histology assessed in 951 adequate biopsy specimens. Results W e sequentially applied CRISPR/Cas9 to delete the B2M and CIITA genes to obtain a CiGEnC Δ HLA clone. CiGEnC Δ HLA cells remained indistinguishable from the parental cell line, CiGEnC, in terms of morphology and phenotype. Previous transplantation was the main determinant of the pretransplantation NHADIA result ( P <0.001). Stratification of 3-month allograft biopsy specimens ( n =298) according to pretransplantation NHADIA tertiles demonstrated that higher levels of non-HLA Abs positively correlated with increased glomerulitis ( P =0.002), microvascular inflammation ( P =0.003), and ABMRh ( P =0.03). A pretransplantation NHADIA threshold of 1.87 strongly discriminated the KTRs with the highest risk of ABMRh ( P =0.005, log-rank test). A multivariate Cox model confirmed that NHADIA status and HLA-DSAs were independent, yet synergistic, predictors of ABMRh. Conclusion The NHADIA identifies non-HLA Abs and strongly predicts graft endothelial injury independent of HLA-DSAs

    A transition support system to build decarbonization scenarios in the academic community

    No full text
    International audienceA growing portion of scientists realises the need to not only alert about climate change, but also change their professional practices. A range of tools have emerged to promote more sustainable activities, yet many scientists struggle to go beyond simple awareness-raising to create concrete transition actions. Here we propose a game-based transition support system MaTerre180’ , which has been designed to build scenarios of greenhouse gas (GHG) emission reductions in the academic community. After providing a common scientific background about the context (global warming issue, its causes and consequences) and setting up a challenge (50% reduction of carbon budget by 2030), the participants belonging to the academic community and its governance bodies immerse themselves into fictional characters, to simulate the behaviour of real research groups. The game has been deployed during the year 2021, with six hundred participants from nine countries and 50 cities. Results explore clear pathways for GHG reductions between 25 and 60%, and a median reduction of 46%. The alternatives allowing the greatest reduction are video communication tools (36%), followed by mutualization of professional activities and voluntary cancellation or reduction, that represent 22 and 14% of reduction, respectively. The remaining 28% of reduction consists of transport alternative, relocation of professional activities, extended duration of some travels, etc. In addition, the analyses pointed out the importance of the guided negotiation phase to bring out some alternatives such as relocation, local partners and computing optimization. An added value of this transition support system is that the information it collects (anonymously) will be used to answer pressing research questions in climate change science and environmental psychology regarding the use of serious games for promoting changes in attitudes and behaviours towards sustainability, and including broader questions on how network structures influence “climate behaviour”, knowledge and the governance of the commons. Modestly, MaTerre180’ offers an innovative game-based transition support system to build scenarios of greenhouse gas (GHG) emission reductions in the academic community. It is not simply a question of moving tokens on a virtual gameboard and a playful adjustment of practices, but rather a question of brainstorming about possible and desirable ways of remodelling research and teaching communities and embracing a new paradigm. After tens of workshops, our results show clear pathways for reaching up to 50% GHG reductions and stress the importance of guided negotiations to bring out alternatives to carbonized activities. This first attempt reinforces our belief that scientific engagement is at the heart of the international development agenda and a key approach to tear down the institutional barriers that inhibit the transformation needed to achieve a more sustainable society
    corecore