29 research outputs found

    Comparing lipid remodeling of brown adipose tissue, white adipose tissue, and liver after one-week high fat diet intervention with quantitative Raman microscopy

    Get PDF
    Brown adipose tissue (BAT) consists of highly metabolically active adipocytes that catabolize nutrients to produce heat. Playing an active role in triacylglycerol (TAG) clearance, research has shown that dietary fatty acids can modulate the TAG chemistry deposition in BAT after weeks-long dietary intervention, similar to what has been shown in white adipose tissue (WAT). Our objective was to compare the influence of sustained, nonchronic dietary intervention (a 1-week interval) on WAT and interscapular BAT lipid metabolism and deposition in situ. We use quantitative, label-free chemical microscopy to show that 1 week of high fat diet (HFD) intervention results in dramatically larger lipid droplet (LD) growth in BAT (and liver) compared to LD growth in inguinal WAT (IWAT). Moreover, BAT showed lipid remodeling as increased unsaturated TAGs in LDs, resembling the dietary lipid composition, while WAT (and liver) did not show lipid remodeling on this time scale. Concurrently, expression of genes involved in lipid metabolism, particularly desaturases, was reduced in BAT and liver from HFD-fed mice after 1 week. Our data show that BAT lipid chemistry remodels exceptionally fast to dietary lipid intervention compared WAT, which further points towards a role in TAG clearance

    CaV1.2 and CaV1.3 voltage-gated L-type Ca2+ channels in rat white fat adipocytes

    Get PDF
    L-type channel antagonists are of therapeutic benefit in the treatment of hyperlipidaemia and insulin resistance. Our aim was to identify L-type voltage-gated Ca2+ channels in white fat adipocytes, and determine if they affect intracellular Ca2+, lipolysis and lipogenesis. We used a multidisciplinary approach of molecular biology, confocal microscopy, Ca2+ imaging and metabolic assays to explore this problem using adipocytes isolated from adult rat epididymal fat pads. CaV1.2, CaV1.3 and CaV1.1 alpha1, beta and alpha2delta subunits were detected at the gene expression level. The CaV1.2 and CaV1.3 alpha1 subunits were identified in the plasma membrane at the protein level. Confocal microscopy with fluorescent antibodies labelled CaV1.2 in the plasma membrane. Ca2+ imaging revealed that the intracellular Ca2+ concentration, [Ca2 +]i was reversibly decreased by removal of extracellular Ca2+, an effect mimicked by verapamil, nifedipine and Co2+, all blockers of L-type channels, whereas the Ca2+ channel agonist BAY-K8644 increased [Ca2+]i. The finding that the magnitude of these effects correlated with basal [Ca2+]i suggests that adipocyte [Ca2+]i is controlled by L-type Ca2+ channels that are constitutively active at the adipocyte depolarized membrane potential. Pharmacological manipulation of L-type channel activity modulated both basal and catecholamine-stimulated lipolysis but not insulin-induced glucose uptake or lipogenesis. We conclude that white adipocytes have constitutively active L-type Ca2+ channels which explains their sensitivity of lipolysis to Ca2+ channel modulators. Our data suggest CaV1.2 as a potential novel therapeutic target in the treatment of obesity

    Parabrachial Interleukin-6 reduces body weight and food intake and increases thermogenesis to regulate energy metabolism

    Get PDF
    Chronic low-grade inflammation and increased serum levels of the cytokine IL-6 accompany obesity. For brain-produced IL-6, the mechanisms by which it controls energy balance and its role in obesity remain unclear. Here, we show that brain-produced IL-6 is decreased in obese mice and rats in a neuroanatomically and sex-specific manner. Reduced IL-6 mRNA localized to lateral parabrachial nucleus (lPBN) astrocytes, microglia, and neurons, including paraventricular hypothalamus-innervating lPBN neurons. IL-6 microinjection into lPBN reduced food intake and increased brown adipose tissue (BAT) thermogenesis in male lean and obese rats by increasing thyroid and sympathetic outflow to BAT. Parabrachial IL-6 interacted with leptin to reduce feeding. siRNA-mediated reduction of lPBN IL-6 leads to increased weight gain and adiposity, reduced BAT thermogenesis, and increased food intake. Ambient cold exposure partly normalizes the obesity-induced suppression of lPBN IL-6. These results indicate that lPBN-produced IL-6 regulates feeding and metabolism and pinpoints (patho)physiological contexts interacting with lPBN IL-6This research was funded by the Swedish Research Council ( 2014-2945 to K.P.S.; 2017-00792 to I.W.A.; and 2013-7107 to Patrik Rorsman), the Novo Nordisk Foundation Excellence project grant (to K.P.S. and I.W.A.), the Ragnar Söderberg Foundation (to K.P.S.), Harald Jeanssons Stiftelse and Greta Jeanssons Stiftelse (to K.P.S.), Magnus Bergvalls Stiftelse (to K.P.S.), the Wallenberg Foundation and the Center for Molecular and Translational Medicine (to K.P.S.), postdoctoral stipendium from The Swedish Brain Foundation (to D.M.), the ERC ( BFU2015-70664-R and StG-281408 ) (to R.N.), and the NIH ( DK-21397 ) (to H.J.G.)S

    Hindbrain insulin controls feeding behavior

    Get PDF
    Objective: Pancreatic insulin was discovered a century ago, and this discovery led to the first lifesaving treatment for diabetes. While still controversial, nearly one hundred published reports suggest that insulin is also produced in the brain, with most focusing on hypothalamic or cortical insulin-producing cells. However, specific function for insulin produced within the brain remains poorly understood. Here we identify insulin expression in the hindbrain's dorsal vagal complex (DVC), and determine the role of this source of insulin in feeding and metabolism, as well as its response to diet-induced obesity in mice. Methods: To determine the contribution of Ins2-producing neurons to feeding behavior in mice, we used the cross of transgenic RipHER-cre mouse and channelrhodopsin-2 expressing animals, which allowed us to optogenetically stimulate neurons expressing Ins2 in vivo. To confirm the presence of insulin expression in Rip-labeled DVC cells, in situ hybridization was used. To ascertain the specific role of insulin in effects discovered via optogenetic stimulation a selective, CNS applied, insulin receptor antagonist was used. To understand the physiological contribution of insulin made in the hindbrain a virogenetic knockdown strategy was used.Results: Insulin gene expression and presence of insulin-promoter driven fluorescence in rat insulin promoter (Rip)-transgenic mice were detected in the hypothalamus, but also in the DVC. Insulin mRNA was present in nearly all fluorescently labeled cells in DVC. Diet-induced obesity in mice altered brain insulin gene expression, in a neuroanatomically divergent manner; while in the hypothalamus the expected obesity-induced reduction was found, in the DVC diet-induced obesity resulted in increased expression of the insulin gene. This led us to hypothesize a potentially divergent energy balance role of insulin in these two brain areas. To determine the acute impact of activating insulin-producing neurons in the DVC, optic stimulation of light-sensitive channelrhodopsin 2 in Rip-transgenic mice was utilized. Optogenetic photoactivation induced hyperphagia after acute activation of the DVC insulin neurons. This hyperphagia was blocked by central application of the insulin receptor antagonist S961, suggesting the feeding response was driven by insulin. To determine whether DVC insulin has a necessary contribution to feeding and meta-bolism, virogenetic insulin gene knockdown (KD) strategy, which allows for site-specific reduction of insulin gene expression in adult mice, was used. While chow-fed mice failed to reveal any changes of feeding or thermogenesis in response to the KD, mice challenged with a high-fat diet consumed less food. No changes in body weight were identified, possibly resulting from compensatory reduction in thermogenesis. Conclusions: Together, our data suggest an important role for hindbrain insulin and insulin-producing cells in energy homeostasis. (c) 2022 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).</p

    A trial to evaluate the effect of the sodium–glucose co‐transporter 2 inhibitor dapagliflozin on morbidity and mortality in patients with heart failure and reduced left ventricular ejection fraction (DAPA‐HF)

    Get PDF
    Background: Sodium–glucose co‐transporter 2 (SGLT2) inhibitors have been shown to reduce the risk of incident heart failure hospitalization in individuals with type 2 diabetes who have, or are at high risk of, cardiovascular disease. Most patients in these trials did not have heart failure at baseline and the effect of SGLT2 inhibitors on outcomes in individuals with established heart failure (with or without diabetes) is unknown. Design and methods: The Dapagliflozin And Prevention of Adverse‐outcomes in Heart Failure trial (DAPA‐HF) is an international, multicentre, parallel group, randomized, double‐blind, study in patients with chronic heart failure, evaluating the effect of dapagliflozin 10 mg, compared with placebo, given once daily, in addition to standard care, on the primary composite outcome of a worsening heart failure event (hospitalization or equivalent event, i.e. an urgent heart failure visit) or cardiovascular death. Patients with and without diabetes are eligible and must have a left ventricular ejection fraction ≀ 40%, a moderately elevated N‐terminal pro B‐type natriuretic peptide level, and an estimated glomerular filtration rate ≄ 30 mL/min/1.73 m2. The trial is event‐driven, with a target of 844 primary outcomes. Secondary outcomes include the composite of total heart failure hospitalizations (including repeat episodes), and cardiovascular death and patient‐reported outcomes. A total of 4744 patients have been randomized. Conclusions: DAPA‐HF will determine the efficacy and safety of the SGLT2 inhibitor dapagliflozin, added to conventional therapy, in a broad spectrum of patients with heart failure and reduced ejection fraction

    A systems biology analysis of adrenergically stimulated adiponectin exocytosis in white adipocytes

    No full text
    Circulating levels of the adipocyte hormone adiponectin are typically reduced in obesity, and this deficiency has been linked to metabolic diseases. It is thus important to understand the mechanisms controlling adiponectin exocytosis. This understanding is hindered by the high complexity of both the available data and the underlying signaling network. To deal with this complexity, we have previously investigated how different intracellular concentrations of Ca2+, cAMP, and ATP affect adiponectin exocytosis, using both patch-clamp recordings and systems biology mathematical modeling. Recent work has shown that adiponectin exocytosis is physiologically triggered via signaling pathways involving adrenergic beta(3) receptors (beta(3)ARs). Therefore, we developed a mathematical model that also includes adiponectin exocytosis stimulated by extracellular epinephrine or the beta(3)AR agonist CL 316243. Our new model is consistent with all previous patch-clamp data as well as new data (collected from stimulations with a combination of the intracellular mediators and extracellular adrenergic stimuli) and can predict independent validation data. We used this model to perform new in silico experiments where corresponding wet lab experiments would be difficult to perform. We simulated adiponectin exocytosis in single cells in response to the reduction of beta(3)ARs that is observed in adipocytes from animals with obesity-induced diabetes. Finally, we used our model to investigate intracellular dynamics and to predict both cAMP levels and adiponectin release by scaling the model from single-cell to a population of cells-predictions corroborated by experimental data. Our work brings us one step closer to understanding the intricate regulation of adiponectin exocytosis.Funding Agencies|Swedish Diabetes Foundation [DIA2017-273, DIA2018-358]; Swedish Research CouncilSwedish Research CouncilEuropean Commission [2019-01239, 2018-05418, 2018-03319, 2019-03767, 2013-7107]; CENIIT [15.09, 20.08]; Swedish Foundation for Strategic ResearchSwedish Foundation for Strategic Research [ITM17-0245]; SciLifeLab; KAW [2020.0182]; Ake Winbergs stiftelse [M19-0449]; H2020 project PRECISE4Q [777107]; Swedish Fund for Research without Animal Experiments [F2019-0010]; ELLIIT; VisualSweden; VINNOVAVinnova [2020-04711]</p

    Impact of hypoxia, simulated ischemia and reperfusion in HL-1 cells on the expression of FKBP12/FKBP12.6 and intracellular calcium dynamics

    No full text
    Aims: To establish a cardiac cell culture model for simulated ischemia and reperfusion and in this model investigate the impact of simulated ischemia and reperfusion on expression of the calcium handling proteins FKBP12 and FKBP12.6, and intracellular calcium dynamics. Methods: HL-1 cell cultures were exposed to normoxia (as control), hypoxia, simulated ischemia (HEDA) or HEDA + reactive oxygen species (ROS) for up to 24 h and after HEDA, with or without ROS, followed or not by simulated reperfusion (REPH) for 6 h. Viability was analyzed with a trypan blue exclusion method. Cell lysates were analyzed with real-time PCR and Western blot (WB) for FKBP12 and FKBP12.6. Intracellular Ca(2+)measurements were performed using dual-wavelength ratio imaging in fura-2 loaded cells. Results: A time-dependent drop in viability was shown after HEDA (P < 0.001). Viability was not further influenced by addition of ROS or REPH. The general patterns of FKBP12 and FKBP12.6 mRNA expression showed upregulation after hypoxia, downregulation after ischemia and normalization after reperfusion, which was partially attenuated if ROS was added during HEDA. The protein contents were unaffected after hypoxia, tended to increase after ischemia and, for FKBP12.6, a further increase after reperfusion was shown. Hypoxia or HEDA, with or without REPH, resulted in a decreased amplitude of the Ca2+ peak in response to caffeine. In addition, cells subjected to HEDA for 3 h or HEDA for 3 h followed by 6 h of REPH displayed irregular Ca2+ oscillations with a decreased frequency. Conclusion: A threshold for cell survival with respect to duration of ischemia was established in our cell line model. Furthermore, we could demonstrate disturbances of calcium handling in the sarcoplasmic reticulum as well as alterations in the expressions of the calcium handling proteins FKBP12 and FKBP12.6, why this model may be suitable for further studies on ischemia and reperfusion with respect to calcium handling of the sarcoplasmic reticulum. (C) 2012 Elsevier Inc. All rights reserved

    Ca<sup>2+</sup>-augmented adiponectin secretion is abolished by cooling while secretion stimulated by cAMP alone is unaffected.

    No full text
    <p><b>A</b> Adiponectin secretion as fold-increase compared to control stimulated by 8-Br-cAMP (1 mM) alone or in combination with ionomycin (1 ÎŒM) during 30 min incubations at 23°C (blue) or 32°C (red). <b>B</b> As in <b>(A)</b> but using forskolin (10 ÎŒM) and IBMX (200 ÎŒM; forsk/IBMX) as a stimulator. Data are mean values ± S.E.M. of 11 experiments at each temperature in (A) and 7 (23°C) and 8 (32°C) in (B). <i>*P<0</i>.<i>05; **P<0</i>.<i>01</i>; <i>**P<0</i>.<i>001</i> vs. control at corresponding temperature. †<i>P<0</i>.<i>01</i> vs. 8-Br-cAMP or forsk/IBMX alone at 32°C; ǂ <i>P<0</i>.<i>05</i> vs. 8-Br-cAMP + ionomycin or forsk/IBMX + ionomycin at room temperature. The data in (B) at 32°C are the same as in Fig. 7B in [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0119530#pone.0119530.ref005" target="_blank">5</a>].</p

    Arrhenius plots presenting the effect of Ca<sup>2+</sup> on the rate of cAMP-triggered exocytosis.

    No full text
    <p>Absolute values of Δ<i>C</i>/Δ<i>t</i> at t = 2 min plotted against the inverse of temperature (T) in the absence <b>(A)</b> and presence <b>(B)</b> of cytosolic Ca<sup>2+</sup>. The curve represents a linear least-squares fit to the equation lnk = lnA—E<sub>A</sub>/RT. E<sub>A</sub> is the energy of activation, k is the change in Δ<i>C</i>/Δ<i>t</i> upon a temperature change, A is the pre-exponential factor. R represents the gas constant and T the absolute temperature as usual. The negative slope of the curve gives activation energies of 5.7 kJ mol<sup>-1</sup> (A) and 53 kJ mol<sup>-1</sup> (B).</p
    corecore