49 research outputs found

    Biomarker investigation of the health effects of CT X-ray exposure in children : a plea to 'image gently'

    Get PDF

    Combination therapy with charged particles and molecular targeting : a promising avenue to overcome radioresistance

    Get PDF
    Radiotherapy plays a central role in the treatment of cancer patients. Over the past decades, remarkable technological progress has been made in the field of conventional radiotherapy. In addition, the use of charged particles (e.g., protons and carbon ions) makes it possible to further improve dose deposition to the tumor, while sparing the surrounding healthy tissues. Despite these improvements, radioresistance and tumor recurrence are still observed. Although the mechanisms underlying resistance to conventional radiotherapy are well-studied, scientific evidence on the impact of charged particle therapy on cancer cell radioresistance is restricted. The purpose of this review is to discuss the potential role that charged particles could play to overcome radioresistance. This review will focus on hypoxia, cancer stem cells, and specific signaling pathways of EGFR, NF kappa B, and Hedgehog as well as DNA damage signaling involving PARP, as mechanisms of radioresistance for which pharmacological targets have been identified. Finally, new lines of future research will be proposed, with a focus on novel molecular inhibitors that could be used in combination with charged particle therapy as a novel treatment option for radioresistant tumors

    The second gamma-H2AX assay inter-comparison exercise carried out in the framework of the European biodosimetry network (RENEB)

    Get PDF
    Purpose: Within the EU RENEB project, seven laboratories have taken part in training and harmonisation activities to strengthen triage gamma H2AX-based radiation exposure assessment. This has culminated in a second triage biodosimetry exercise. Materials and methods: Whole blood and separated lymphocyte samples were homogenously irradiated with 60Co gamma rays at 0.5, 2.5 (blind samples), 0 and 2 Gy (reference samples). Following post-exposure incubations of 4 and 24 h, 16 samples were shipped on ice packs to each partner. The samples were stained and scored for gamma-H2AX foci, using manual and/or automated fluorescence microscope scoring strategies. Dose estimates were obtained and used to assign triage categories to the samples. Results: Average dose estimates across all the laboratories correlated well with true doses. The most accurate assignment of triage category was achieved by manual scoring of the 4-h blood and lymphocyte samples. Only three samples out of a total of 46 were miscategorized in a way that could have adversely effected the clinical management of a radiation casualty. Conclusions: This inter-comparison exercise has demonstrated that following a recent acute radiation exposure, the gamma-H2AX assay could be a useful triage tool that can be successfully applied across a network of laboratories

    Intensity modulated radiotherapy induces pro-inflammatory and pro-survival responses in prostate cancer patients

    Get PDF
    Intensity modulated radiotherapy (IMRT) is one of the modern conformal radiotherapies that is widely used within the context of cancer patient treatment. It uses multiple radiation beams targeted to the tumor, however, large volumes of the body receive low doses of irradiation. Using γ-H2AX and global genome expression analysis, we studied the biological responses induced by low doses of ionizing radiation in prostate cancer patients following IMRT. By means of different bioinformatics analyses, we report that IMRT induced an inflammatory response via the induction of viral, adaptive, and innate immune signaling. In response to growth factors and immune-stimulatory signaling, positive regulation in the progression of cell cycle and DNA replication were induced. This denotes pro-inflammatory and pro-survival responses. Furthermore, double strand DNA breaks were induced in every patient 30 min after the treatment and remaining DNA repair and damage signaling continued after 18-24 h. Nine genes belonging to inflammatory responses (TLR3, SH2D1A and IL18), cell cycle progression (ORC4, SMC2 and CCDC99) and DNA damage and repair (RAD17, SMC6 and MRE11A) were confirmed by quantitative RT-PCR. This study emphasizes that the risk assessment of health effects from the out-of-field low doses during IMRT should be of concern, as these may increase the risk of secondary cancers and/or systemic inflammation

    A perspective on the radiopharmaceutical requirements for imaging and therapy of glioblastoma

    Get PDF
    Despite numerous clinical trials and pre-clinical developments, the treatment of glioblastoma (GB) remains a challenge. The current survival rate of GB averages one year, even with an optimal standard of care. However, the future promises efficient patient-tailored treatments, including targeted radionuclide therapy (TRT). Advances in radiopharmaceutical development have unlocked the possibility to assess disease at the molecular level allowing individual diagnosis. This leads to the possibility of choosing a tailored, targeted approach for therapeutic modalities. Therapeutic modalities based on radiopharmaceuticals are an exciting development with great potential to promote a personalised approach to medicine. However, an effective targeted radionuclide therapy (TRT) for the treatment of GB entails caveats and requisites. This review provides an overview of existing nuclear imaging and TRT strategies for GB. A critical discussion of the optimal characteristics for new GB targeting therapeutic radiopharmaceuticals and clinical indications are provided. Considerations for target selection are discussed, i.e. specific presence of the target, expression level and pharmacological access to the target, with particular attention to blood-brain barrier crossing. An overview of the most promising radionuclides is given along with a validation of the relevant radiopharmaceuticals and theranostic agents (based on small molecules, peptides and monoclonal antibodies). Moreover, toxicity issues and safety pharmacology aspects will be presented, both in general and for the brain in particular.http://www.thno.orgdm2022Nuclear Medicin

    Radiosensitization Effect of Gold Nanoparticles in Proton Therapy

    Get PDF
    The number of proton therapy facilities and the clinical usage of high energy proton beams for cancer treatment has substantially increased over the last decade. This is mainly due to the superior dose distribution of proton beams resulting in a reduction of side effects and a lower integral dose compared to conventional X-ray radiotherapy. More recently, the usage of metallic nanoparticles as radiosensitizers to enhance radiotherapy is receiving growing attention. While this strategy was originally intended for X-ray radiotherapy, there is currently a small number of experimental studies indicating promising results for proton therapy. However, most of these studies used low proton energies, which are less applicable to clinical practice; and very small gold nanoparticles (AuNPs). Therefore, this proof of principle study evaluates the radiosensitization effect of larger AuNPs in combination with a 200 MeV proton beam. CHO-K1 cells were exposed to a concentration of 10 μg/ml of 50 nm AuNPs for 4 hours before irradiation with a clinical proton beam at NRF iThemba LABS. AuNP internalization was confirmed by inductively coupled mass spectrometry and transmission electron microscopy, showing a random distribution of AuNPs throughout the cytoplasm of the cells and even some close localization to the nuclear membrane. The combined exposure to AuNPs and protons resulted in an increase in cell killing, which was 27.1% at 2 Gy and 43.8% at 6 Gy, compared to proton irradiation alone, illustrating the radiosensitizing potential of AuNPs. Additionally, cells were irradiated at different positions along the proton depth-dose curve to investigate the LET-dependence of AuNP radiosensitization. An increase in cytogenetic damage was observed at all depths for the combined treatment compared to protons alone, but no incremental increase with LET could be determined. In conclusion, this study confirms the potential of 50 nm AuNPs to increase the therapeutic efficacy of proton therapy

    The Combination of Particle Irradiation With the Hedgehog Inhibitor GANT61 Differently Modulates the Radiosensitivity and Migration of Cancer Cells Compared to X-Ray Irradiation

    Get PDF
    Due to the advantages of charged particles compared to conventional radiotherapy, a vast increase is noted in the use of particle therapy in the clinic. These advantages include an improved dose deposition and increased biological effectiveness. Metastasis is still an important cause of mortality in cancer patients and evidence has shown that conventional radiotherapy can increase the formation of metastasizing cells. An important pathway involved in the process of metastasis is the Hedgehog (Hh) signaling pathway. Recent studies have demonstrated that activation of the Hh pathway, in response to X-rays, can lead to radioresistance and increased migratory, and invasive capabilities of cancer cells. Here, we investigated the effect of X-rays, protons, and carbon ions on cell survival, migration, and Hh pathway gene expression in prostate cancer (PC3) and medulloblastoma (DAOY) cell lines. In addition, the potential modulation of cell survival and migration by the Hh pathway inhibitor GANT61 was investigated. We found that in both cell lines, carbon ions were more effective in decreasing cell survival and migration as well as inducing more significant alterations in the Hh pathway genes compared to X-rays or protons. In addition, we show here for the first time that the Hh inhibitor GANT61 is able to sensitize DAOY medulloblastoma cells to particle radiation (proton and carbon ion) but not to conventional X-rays. This important finding demonstrates that the results of combination treatment strategies with X-ray radiotherapy cannot be automatically extrapolated to particle therapy and should be investigated separately. In conclusion, combining GANT61 with particle radiation could offer a benefit for specific cancer types with regard to cancer cell survival

    Realising the European network of biodosimetry: RENEB-status quo

    Get PDF
    Creating a sustainable network in biological and retrospective dosimetry that involves a large number of experienced laboratories throughout the European Union (EU) will significantly improve the accident and emergency response capabilities in case of a large-scale radiological emergency. A well-organised cooperative action involving EU laboratories will offer the best chance for fast and trustworthy dose assessments that are urgently needed in an emergency situation. To this end, the EC supports the establishment of a European network in biological dosimetry (RENEB). The RENEB project started in January 2012 involving cooperation of 23 organisations from 16 European countries. The purpose of RENEB is to increase the biodosimetry capacities in case of large-scale radiological emergency scenarios. The progress of the project since its inception is presented, comprising the consolidation process of the network with its operational platform, intercomparison exercises, training activities, proceedings in quality assurance and horizon scanning for new methods and partners. Additionally, the benefit of the network for the radiation research community as a whole is addressed

    Biokinetics and dosimetry of commonly used radiopharmaceuticals in diagnostic nuclear medicine – a review

    Get PDF
    Purpose The impact on patients’ health of radiopharmaceuticals in nuclear medicine diagnostics has not until now been evaluated systematically in a European context. Therefore, as part of the EU-funded Project PEDDOSE. NET (www.peddose.net), we review and summarize the current knowledge on biokinetics and dosimetry of commonly used diagnostic radiopharmaceuticals. Methods A detailed literature search on published biokinetic and dosimetric data was performed mostly via PubMed (www.ncbi.nlm.nih.gov/pubmed). In principle the criteria for inclusion of data followed the EANM Dosimetry Committee guidance document on good clinical reporting. Results Data on dosimetry and biokinetics can be difficult to find, are scattered in various journals and, especially in paediatric nuclear medicine, are very scarce. The data collection and calculation methods vary with respect to the time-points, bladder voiding, dose assessment after the last data point and the way the effective dose was calculated. In many studies the number of subjects included for obtaining biokinetic and dosimetry data was fewer than ten, and some of the biokinetic data were acquired more than 20 years ago. Conclusion It would be of interest to generate new data on biokinetics and dosimetry in diagnostic nuclear medicine using state-of-the-art equipment and more uniform dosimetry protocols. For easier public access to dosimetry data for diagnostic radiopharmaceuticals, a database containing these data should be created and maintained
    corecore