6 research outputs found

    Behavior of free-standing, slender, rigid, rocking and sliding structures under seismic motion

    No full text
    Dans le cadre des études relatives à la sûreté sismique des installations industrielles, on est amené à se préoccuper de la stabilité de structures libres (des équipements, des containers, des fûts. . . ) posées à même le sol. De nombreuses méthodes ont permis d’établir des critères de sûreté réputés conservatifs, sans qu’il soit besoin de représenter finement le comportement dynamique de l’objet. Dans le cadre de cette thèse, on a cherché à analyser la capacité de prédiction par des modèles numériques du mouvement de corps rigides libres soumis à des séismes impliquant impacts et glissements. Pour cela, on s’est appuyé sur deux campagnes expérimentales qui ont été menées au laboratoire EMSI du CEA/Saclay sur des blocs parallélépipédiques en acier, élancés et disposant de 4 appuis non ponctuels usinés avec des tolérances standards. Dans un premier temps, des essais de lâcher (bloc immobile en appuis sur deux pieds, puis lâché sans source d’excitation extérieure), souvent analysés dans la littérature comme un mouvement plan, ont fait apparaître un mouvement 3D reproductible dans les premiers instants consécutifs au lâcher. L’analyse fine de ce mouvement a permis, d’une part, de conclure qu’il était dû à des défauts de géométrie des pieds et, d’autre part, d’élaborer un modèle numérique représentatif incluant ces défauts. Dans un second temps, il a été question d’étudier l’aptitude du modèle numérique à représenter le comportement dynamique au cours du temps d’un bloc rigide élancé non idéal soumis à des excitations sismiques. Les blocs ont été soumis à 100 réalisations d’un processus stationnaire (essais de variabilité) puis 100 fois à la même accélération (essais de répétabilité). D’un point de vue statistique, et malgré les incertitudes expérimentales, ce travail a permis d’exhiber une bonne adéquation entre les résultats des modèles numériques et les résultats expérimentaux. En outre, il a permis de quantifier la durée au-delà de laquelle une prédiction du comportement ne peut plus être considérée comme pertinente. Pour finir, on s’est attaché à appliquer des outils classiques de fiabilité au problème de bloc rigide soumis à des séismes, ainsi que la méthode récente des Subset Simulations.In the field of nuclear safety, the stability of free standing structures like containers, barrels or electronical devices is considered to be an important matter. Until now, the literature written on the subject presents some stability criteria known to be conservative without needing to represent in detail the object behavior. This thesis attempts to analyse the capacity numerical models have to predict the behavior of blocks submitted to seismic acceleration, with impacts and friction. To this effect, two experimental campaigns were carried out in the EMSI laboratory (CEA Saclay, France) on slender massive prismatic steel blocks, with 4 machined (i.e. non-ideal) feet. First of all, release tests (the block is in an unsteady position on 2 feet, kept still with a wire, then the wire is cut and the block is released without any ground motion) are usually analysed as a plane motion. Our experiments have shown a reproducible out-of-plane (3D) motion during the first seconds of the release. A detailed analysis highlighted the fact that this 3D motion is induced by geometrical defects on the block feet, and allowed us to build an accurate numerical model of this behavior. The ability of this numerical model to match the dynamic behavior of a non-ideal rigid slender block has been questioned. In a second campaign, 4 blocks were subjected on the one hand to 100 realisations of a stationnary process, and on the other hand 100 times to the same excitation. This accounts for an analysis of the variability of two 100-samples of results obtained under two different input variability levels. From a statistical point of view, despite experimental uncertainties this article demonstrates a good agreement between numerical and experimental results. Finally, some classical tools of reliabily were applied to the rocking block problem, as well as a newer method called Subset Simulation

    Contribution à l'étude du comportement de structures libres, rigides, élancées, glissantes et basculantes sous séisme

    No full text
    In the field of nuclear safety, the stability of free standing structures like containers, barrels or electronical devices is considered to be an important matter. Until now, the literature written on the subject presents some stability criteria known to be conservative without needing to represent in detail the object behavior. This thesis attempts to analyse the capacity numerical models have to predict the behavior of blocks submitted to seismic acceleration, with impacts and friction. To this effect, two experimental campaigns were carried out in the EMSI laboratory (CEA Saclay, France) on slender massive prismatic steel blocks, with 4 machined (i.e. non-ideal) feet.First of all, release tests (the block is in an unsteady position on 2 feet, kept still with a wire, then the wire is cut and the block is released without any ground motion) are usually analysed as a plane motion. Our experiments have shown a reproducible out-of-plane (3D) motion during the first seconds of the release. A detailed analysis highlighted the fact that this 3D motion is induced by geometrical defects on the block feet, and allowed us to build an accurate numerical model of this behavior. The ability of this numerical model to match the dynamic behavior of a non-ideal rigid slender block has been questioned. In a second campaign, 4 blocks were subjected on the one hand to 100 realisations of a stationnary process, and on the other hand 100 times to the same excitation. This accounts for an analysis of the variability of two 100-samples of results obtained under two different input variability levels. From a statistical point of view, despite experimental uncertainties this article demonstrates a good agreement between numerical and experimental results.Finally, some classical tools of reliabily were applied to the rocking block problem, as well as a newer method called Subset Simulation.Dans le cadre des études relatives à la sûreté sismique des installations industrielles, on est amené à se préoccuper de la stabilité de structures libres (des équipements, des containers, des fûts. . . ) posées à même le sol. De nombreuses méthodes ont permis d’établir des critères de sûreté réputés conservatifs, sans qu’il soit besoin de représenter finement le comportement dynamique de l’objet. Dans le cadre de cette thèse, on a cherché à analyser la capacité de prédiction par des modèles numériques du mouvement de corps rigides libres soumis à des séismes impliquant impacts et glissements. Pour cela, on s’est appuyé sur deux campagnes expérimentales qui ont été menées au laboratoire EMSI du CEA/Saclay sur des blocs parallélépipédiques en acier, élancés et disposant de 4 appuis non ponctuels usinés avec des tolérances standards. Dans un premier temps, des essais de lâcher (bloc immobile en appuis sur deux pieds, puis lâché sans source d’excitation extérieure), souvent analysés dans la littérature comme un mouvement plan, ont fait apparaître un mouvement 3D reproductible dans les premiers instants consécutifs au lâcher. L’analyse fine de ce mouvement a permis, d’une part, de conclure qu’il était dû à des défauts de géométrie des pieds et, d’autre part, d’élaborer un modèle numérique représentatif incluant ces défauts. Dans un second temps, il a été question d’étudier l’aptitude du modèle numérique à représenter le comportement dynamique au cours du temps d’un bloc rigide élancé non idéal soumis à des excitations sismiques. Les blocs ont été soumis à 100 réalisations d’un processus stationnaire (essais de variabilité) puis 100 fois à la même accélération (essais de répétabilité). D’un point de vue statistique, et malgré les incertitudes expérimentales, ce travail a permis d’exhiber une bonne adéquation entre les résultats des modèles numériques et les résultats expérimentaux. En outre, il a permis de quantifier la durée au-delà de laquelle une prédiction du comportement ne peut plus être considérée comme pertinente.Pour finir, on s’est attaché à appliquer des outils classiques de fiabilité au problème de bloc rigide soumis à des séismes, ainsi que la méthode récente des Subset Simulations

    Experimental and numerical analyses of variability in the responses of imperfect slender free rigid blocks under random dynamic excitations

    No full text
    International audienceDue to the well-known sensitivity of the behaviors of free structures under seismic excitations, the question of the aptitude of a numerical model to accurately represent them arise. To contribute to the answer to this question, this article presents experiments which were carried out on the shaking table of CEA/Saclay in France, on three rigid blocks with geometrical defects, inevitably due to the manufacturing process, subjected to 100 realizations of a random process. These tests were analyzed using specifically-developed indicators, and compared with the results yielded by two numerical models, one with a symmetrical geometry and the other with a non-symmetrical geometry, calibrated to reproduce out-of-plane behavior identified through release tests. Counter-intuitively, this article shows that a numerical model can predict motion over a longer period than an experiment performed on a supposedly identical block. From a statistical point of view, despite experimental uncertainties this article shows a good agreement between numerical and experimental results. Finally, a numerical study, performed using artificial seismic signals, showed that the assumption of perfect geometry can lead to an underestimation of the risk of overturning. Moreover, it is showed that a symmetrical model with a realistic slenderness correction can provide an overestimation of this risk under 1D excitation, but not in 2D

    Experimental and numerical investigation of the earthquake response of crane bridges

    No full text
    International audienceThe experimental and numerical response of crane bridges is studied in this work. To this end, an experimental campaign on a scale model of an overhead crane bridge was carried out on the shaking table of CEA/Saclay in France. A special similarity law has been used which preserves the ratios of seismic forces to friction forces and of seismic forces to gravity forces, without added masses. A numerical model, composed of beam elements, which takes into account non-linear effects, especially impact and friction, and simulates the earthquake response of the crane bridge, is presented. The comparison of experimental and analytical results gives an overall satisfactory agreement. Finally, a simplified model of the crane bridge, with only a few degrees of freedom is proposed

    Experimental and numerical response of rigid slender blocks with geometrical defects under seismic excitation

    No full text
    The present work investigates on the influence of small geometrical defects on the behavior of slender rigid blocks. A comprehensive experimental campaign was carried out on one of the shake tables of CEA/Saclay in France. The tested model was a massive steel block with standard manufacturing quality. Release, free oscillations tests as well as shake table tests revealed a non-negligible out-of-plane motion even in the case of apparently plane initial conditions or excitations. This motion exhibits a highly reproducible part for a short duration that was used to calibrate a numerical geometrically asymmetrical model. The stability of this model when subjected to 2 000 artificial seismic horizontal bidirectional signals was compared to the stability of a symmetrical one. This study showed that the geometrical imperfections slightly increase the rocking and overturning probabilities under bidirectional seismic excitations in a narrow range of peak ground acceleration

    Experimental and numerical response of rigid slender blocks with geometrical defects under seismic excitation

    No full text
    The present work investigates on the influence of small geometrical defects on the behavior of slender rigid blocks. A comprehensive experimental campaign was carried out on one of the shake tables of CEA/Saclay in France. The tested model was a massive steel block with standard manufacturing quality. Release, free oscillations tests as well as shake table tests revealed a non-negligible out-of-plane motion even in the case of apparently plane initial conditions or excitations. This motion exhibits a highly reproducible part for a short duration that was used to calibrate a numerical geometrically asymmetrical model. The stability of this model when subjected to 2 000 artificial seismic horizontal bidirectional signals was compared to the stability of a symmetrical one. This study showed that the geometrical imperfections slightly increase the rocking and overturning probabilities under bidirectional seismic excitations in a narrow range of peak ground acceleration
    corecore