193 research outputs found

    Alpha/beta and gamma interferons are induced by infection with noncytopathic bovine viral diarrhea virus in vivo

    Get PDF
    In contrast to the results of previous in vitro studies, experimental infection of calves with noncytopathic bovine viral diarrhea virus (ncpBVDV) was found to induce strong alpha/beta and gamma interferon responses in gnotobiotic animals. These responses were associated with depressed levels of transforming growth factor β (TGF-β) in serum. The results of this study indicate that the immunosuppression caused by ncpBVDV is not associated with low interferon responses or elevated levels of TGF-β

    Unifying Parsimonious Tree Reconciliation

    Full text link
    Evolution is a process that is influenced by various environmental factors, e.g. the interactions between different species, genes, and biogeographical properties. Hence, it is interesting to study the combined evolutionary history of multiple species, their genes, and the environment they live in. A common approach to address this research problem is to describe each individual evolution as a phylogenetic tree and construct a tree reconciliation which is parsimonious with respect to a given event model. Unfortunately, most of the previous approaches are designed only either for host-parasite systems, for gene tree/species tree reconciliation, or biogeography. Hence, a method is desirable, which addresses the general problem of mapping phylogenetic trees and covering all varieties of coevolving systems, including e.g., predator-prey and symbiotic relationships. To overcome this gap, we introduce a generalized cophylogenetic event model considering the combinatorial complete set of local coevolutionary events. We give a dynamic programming based heuristic for solving the maximum parsimony reconciliation problem in time O(n^2), for two phylogenies each with at most n leaves. Furthermore, we present an exact branch-and-bound algorithm which uses the results from the dynamic programming heuristic for discarding partial reconciliations. The approach has been implemented as a Java application which is freely available from http://pacosy.informatik.uni-leipzig.de/coresym.Comment: Peer-reviewed and presented as part of the 13th Workshop on Algorithms in Bioinformatics (WABI2013

    ANALOG METHODS OF DATA STORAGE.

    Full text link
    This report is the descriptive summary of the Analog Methods of Data Storage

    Language Conflict in Algeria: From Colonialism to Post-Independence

    Get PDF
    Rift Valley fever virus (RVFV) is a zoonotic mosquito-borne virus that was first discovered in Kenya in 1930 and has since spread to become endemic in much of Africa and the Arabian Peninsula. Rift Valley fever (RVF) causes recurrent outbreaks of febrile illness associated with high levels of mortality and poor outcomes during pregnancy—including foetal malformations, spontaneous abortion and stillbirths—in livestock, and associated with miscarriage in humans. No vaccines are available for human use and those licensed for veterinary use have potential drawbacks, including residual virulence that may contraindicate their use in pregnancy. To address this gap, we previously developed a simian adenovirus vectored vaccine, ChAdOx1 RVF, that encodes RVFV envelope glycoproteins. ChAdOx1 RVF is fully protective against RVF in non-pregnant livestock and is also under development for human use. Here, we now demonstrate that when administered to pregnant sheep and goats, ChAdOx1 RVF is safe, elicits high titre RVFV neutralizing antibody, and provides protection against viraemia and foetal loss, although this protection is not as robust for the goats. In addition, we provide a description of RVFV challenge in pregnant goats and contrast this to the pathology observed in pregnant sheep. Together, our data further support the ongoing development of ChAdOx1 RVF vaccine for use in livestock and humans.</p

    Phylogenetic Codivergence Supports Coevolution of Mimetic Heliconius Butterflies

    Get PDF
    The unpalatable and warning-patterned butterflies _Heliconius erato_ and _Heliconius melpomene_ provide the best studied example of mutualistic M&#xfc;llerian mimicry, thought &#x2013; but rarely demonstrated &#x2013; to promote coevolution. Some of the strongest available evidence for coevolution comes from phylogenetic codivergence, the parallel divergence of ecologically associated lineages. Early evolutionary reconstructions suggested codivergence between mimetic populations of _H. erato_ and _H. melpomene_, and this was initially hailed as the most striking known case of coevolution. However, subsequent molecular phylogenetic analyses found discrepancies in phylogenetic branching patterns and timing (topological and temporal incongruence) that argued against codivergence. We present the first explicit cophylogenetic test of codivergence between mimetic populations of _H. erato_ and _H. melpomene_, and re-examine the timing of these radiations. We find statistically significant topological congruence between multilocus coalescent population phylogenies of _H. erato_ and _H. melpomene_, supporting repeated codivergence of mimetic populations. Divergence time estimates, based on a Bayesian coalescent model, suggest that the evolutionary radiations of _H. erato_ and _H. melpomene_ occurred over the same time period, and are compatible with a series of temporally congruent codivergence events. This evidence supports a history of reciprocal coevolution between M&#xfc;llerian co-mimics characterised by phylogenetic codivergence and parallel phenotypic change

    Modelling the Influence of Foot-and-Mouth Disease Vaccine Antigen Stability and Dose on the Bovine Immune Response

    Get PDF
    Foot and mouth disease virus causes a livestock disease of significant global socio-economic importance. Advances in its control and eradication depend critically on improvements in vaccine efficacy, which can be best achieved by better understanding the complex within-host immunodynamic response to inoculation. We present a detailed and empirically parametrised dynamical mathematical model of the hypothesised immune response in cattle, and explore its behaviour with reference to a variety of experimental observations relating to foot and mouth immunology. The model system is able to qualitatively account for the observed responses during in-vivo experiments, and we use it to gain insight into the incompletely understood effect of single and repeat inoculations of differing dosage using vaccine formulations of different structural stability

    Australian spiny mountain crayfish and their temnocephalan ectosymbionts: an ancient association on the edge of coextinction?

    Get PDF
    Australian spiny mountain crayfish (Euastacus, Parastacidae) and their ecotosymbiotic temnocephalan flatworms (Temnocephalida, Platyhelminthes) may have co-occurred and interacted through deep time, during a period of major environmental change. Therefore, reconstructing the history of their association is of evolutionary, ecological, and conservation significance. Here, time-calibrated Bayesian phylogenies of Euastacus species and their temnocephalans (Temnohaswellia and Temnosewellia) indicate near-synchronous diversifications from the Cretaceous. Statistically significant cophylogeny correlations between associated clades suggest linked evolutionary histories. However, there is a stronger signal of codivergence and greater host specificity in Temnosewellia, which co-occurs with Euastacus across its range. Phylogeography and analyses of evolutionary distinctiveness (ED) suggest that regional differences in the impact of climate warming and drying had major effects both on crayfish and associated temnocephalans. In particular, Euastacus and Temnosewellia show strong latitudinal gradients in ED and, conversely, in geographical range size, with the most distinctive, northern lineages facing the greatest risk of extinction. Therefore, environmental change has, in some cases, strengthened ecological and evolutionary associations, leaving host-specific temnocephalans vulnerable to coextinction with endangered hosts. Consequently, the extinction of all Euastacus species currently endangered (75%) predicts coextinction of approximately 60% of the studied temnocephalans, with greatest loss of the most evolutionarily distinctive lineages

    Aerosol Delivery of a Candidate Universal Influenza Vaccine Reduces Viral Load in Pigs Challenged with Pandemic H1N1 Virus

    Get PDF
    Influenza A viruses are a major health threat to livestock and humans, causing considerable mortality, morbidity, and economic loss. Current inactivated influenza vaccines are strain specific and new vaccines need to be produced at frequent intervals to combat newly arising influenza virus strains, so that a universal vaccine is highly desirable. We show that pandemic H1N1 influenza virus in which the hemagglutinin signal sequence has been suppressed (S-FLU), when administered to pigs by aerosol can induce CD4 and CD8 T cell immune responses in blood, bronchoalveolar lavage (BAL), and tracheobronchial lymph nodes. Neutralizing Ab was not produced. Detection of a BAL response correlated with a reduction in viral titer in nasal swabs and lungs, following challenge with H1N1 pandemic virus. Intratracheal immunization with a higher dose of a heterologous H5N1 S-FLU vaccine induced weaker BAL and stronger tracheobronchial lymph node responses and a lesser reduction in viral titer. We conclude that local cellular immune responses are important for protection against influenza A virus infection, that these can be most efficiently induced by aerosol immunization targeting the lower respiratory tract, and that S-FLU is a promising universal influenza vaccine candidate
    corecore