481 research outputs found

    Flavour and Collider Interplay for SUSY at LHC7

    Get PDF
    The current 7 TeV run of the LHC experiment shall be able to probe gluino and squark masses up to values larger than 1 TeV. Assuming that hints for SUSY are found in the jets plus missing energy channel by the end of a 5 fb1^{-1} run, we explore the flavour constraints on three models with a CMSSM-like spectrum: the CMSSM itself, a Seesaw extension of the CMSSM, and Flavoured CMSSM. In particular, we focus on decays that might have been measured by the time the run is concluded, such as BsμμB_s\to\mu\mu and μeγ\mu\to e\gamma. We also analyse constraints imposed by neutral meson bounds and electric dipole moments. The interplay between collider and flavour experiments is explored through the use of three benchmark scenarios, finding the flavour feedback useful in order to determine the model parameters and to test the consistency of the different models.Comment: 44 pages, 15 figures; v3: minor corrections, added references, updated figures. Version accepted for publicatio

    Precise measurements of the properties of the B-1(5721)(0,+) and B-2*(5747)(0,+) states and observation of B-+,B-0 pi(-,+) mass structures

    Get PDF
    Invariant mass distributions of B+π− and B0π+ combinations are investigated in order to study excited B mesons. The analysis is based on a data sample corresponding to 3.0 fb−1 of pp collision data, recorded by the LHCb detector at centre-of-mass energies of 7 and 8 TeV. Precise measurements of the masses and widths of the B1(5721)0,+ and B2(5747)0,+ states are reported. Clear enhancements, particularly prominent at high pion transverse momentum, are seen over background in the mass range 5850-6000 MeV in both B+π− and B0π+ combinations. The structures are consistent with the presence of four excited B mesons, labelled BJ (5840)0,+ and BJ (5960)0,+, whose masses and widths are obtained under different hypotheses for their quantum numbers

    X4 Human Immunodeficiency Virus Type 1 gp120 Promotes Human Hepatic Stellate Cell Activation and Collagen I Expression through Interactions with CXCR4

    Get PDF
    <div><h3>Background & Aims</h3><p>Patients coinfected with HIV-1 and HCV develop more rapid liver fibrosis than patients monoinfected with HCV. HIV RNA levels correlate with fibrosis progression implicating HIV directly in the fibrotic process. While activated hepatic stellate cells (HSCs) express the 2 major HIV chemokine coreceptors, CXCR4 and CCR5, little is known about the pro-fibrogenic effects of the HIV-1 envelope protein, gp120, on HSCs. We therefore examined the <em>in vitro</em> impact of X4 gp120 on HSC activation, collagen I expression, and underlying signaling pathways and examined the <em>in vivo</em> expression of gp120 in HIV/HCV coinfected livers.</p> <h3>Methods</h3><p>Primary human HSCs and LX-2 cells, a human HSC line, were challenged with X4 gp120 and expression of fibrogenic markers assessed by qRT-PCR and Western blot +/− either CXCR4-targeted shRNA or anti-CXCR4 neutralizing antibody. Downstream intracellular signaling pathways were evaluated with Western blot and pre-treatment with specific pathway inhibitors. Gp120 immunostaining was performed on HIV/HCV coinfected liver biopsies.</p> <h3>Results</h3><p>X4 gp 120 significantly increased expression of alpha-smooth muscle actin (a-SMA) and collagen I in HSCs which was blocked by pre-incubation with either CXCR4-targeted shRNA or anti-CXCR4 neutralizing antibody. Furthermore, X4 gp120 promoted Extracellular signal-regulated kinase (ERK) 1/2 phosphorylation and pretreatment with an ERK inhibitor attenuated HSC activation and collagen I expression. Sinusoidal staining for gp120 was evident in HIV/HCV coinfected livers.</p> <h3>Conclusions</h3><p>X4 HIV-1 gp120 is pro-fibrogenic through its interactions with CXCR4 on activated HSCs. The availability of small molecule inhibitors to CXCR4 make this a potential anti-fibrotic target in HIV/HCV coinfected patients.</p> </div

    Associations Between Incident Ischemic Stroke Events and Stroke and Cardiovascular Disease-Related Genome-Wide Association Studies Single Nucleotide Polymorphisms in the Population Architecture Using Genomics and Epidemiology Study

    Get PDF
    BACKGROUND: Genome-wide association studies (GWAS) have identified loci associated with ischemic stroke (IS) and cardiovascular disease (CVD) in European-descent individuals, but their replication in different populations has been largely unexplored. METHODS AND RESULTS: Nine single nucleotide polymorphisms (SNPs) selected from GWAS and meta-analyses of stroke, and 86 SNPs previously associated with myocardial infarction and CVD risk factors, including blood lipids (high density lipoprotein [HDL], low density lipoprotein [LDL], and triglycerides), type 2 diabetes, and body mass index (BMI), were investigated for associations with incident IS in European Americans (EA) N=26 276, African-Americans (AA) N=8970, and American Indians (AI) N=3570 from the Population Architecture using Genomics and Epidemiology Study. Ancestry-specific fixed effects meta-analysis with inverse variance weighting was used to combine study-specific log hazard ratios from Cox proportional hazards models. Two of 9 stroke SNPs (rs783396 and rs1804689) were significantly associated with [corrected] IS hazard in AA; none were significant in this large EA cohort. Of 73 CVD risk factor SNPs tested in EA, 2 (HDL and triglycerides SNPs) were associated with IS. In AA, SNPs associated with LDL, HDL, and BMI were significantly associated with IS (3 of 86 SNPs tested). Out of 58 SNPs tested in AI, 1 LDL SNP was significantly associated with IS. CONCLUSIONS: Our analyses showing lack of replication in spite of reasonable power for many stroke SNPs and differing results by ancestry highlight the need to follow up on GWAS findings and conduct genetic association studies in diverse populations. We found modest IS associations with BMI and lipids SNPs, though these findings require confirmation

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
    corecore