26 research outputs found

    Sex, seasonal, and stress-related variations in elasmobranch corticosterone concentrations

    Get PDF
    Serum corticosterone was previously studied in numerous elasmobranch fishes (sharks, skates and rays), but the role of this steroid, widespread throughout many taxa, has yet to be defined. The goal of this study was to test whether corticosterone varied in response to acute and chronic capture stress, and across the reproductive cycle in the bonnethead shark, Sphyrna tiburo, and Atlantic stingray, Dasyatis sabina. Serum corticosterone in S. tiburo increased following capture and again 24 h post-capture, possibly caused by interference with 1α-hydroxycorticosterone, the primary stress hormone in elasmobranchs. Higher serum concentrations in males compared to females were observed in both species. Variations in corticosterone also occurred during the reproductive cycle in both species. Consistent with other taxa, elevations in male bonnethead sharks and stingrays coincided with peak testicular development and mating. Elevations in female bonnethead sharks occurred from the time of mating through sperm storage into early gestation. In contrast, corticosterone levels in female stingrays were low during their protracted mating season, but elevated through late gestation and parturition. These results indicate that corticosterone has a limited role, if any, in acute and chronic stress associated with capture in S. tiburo, but likely has physiological functions associated with its glucocorticoid properties across the reproductive cycle of both species. © 2007 Elsevier Inc. All rights reserved

    Evaluation of Serum for Pathophysiological Effects of Prolonged Low Salinity Water Exposure in Displaced Bottlenose Dolphins (Tursiops truncatus)

    Get PDF
    We conducted a retrospective study of serum biochemistry and hematologic findings from displaced, out-of-habitat bottlenose dolphins (Tursiops truncatus) exposed to various low salinity environments in waters along the southern United States including southeastern Atlantic and northern Gulf of Mexico. Serum sodium, chloride, and calculated osmolality were significantly lower and below reference ranges in displaced animals compared to free-ranging case control animals. This suggests clinical hyponatremia, hypochloremia, and hypo-osmolality due to an uptake of low saline water from the environment. In addition, significant differences were found in other serum chemistry variables, although none were outside of normal reference ranges for non-controlled free-ranging animals. Multiple linear regressions demonstrated the degree of salinity had a greater pathophysiologic response than the duration of fresh water exposure. The Na/Cl ratio and bicarbonate were the only variables that were significantly modulated by exposure duration. These findings suggest that the degree of salinity is a critical factor when assessing and managing care for dolphins chronically exposed to low salinity water. Results from this study indicate that changes in various biochemical parameters can be used to determine fresh water exposure and aid in determining the treatment for animals recovered from low salinity waters

    Hearing Loss in Stranded Odontocete Dolphins and Whales

    Get PDF
    The causes of dolphin and whale stranding can often be difficult to determine. Because toothed whales rely on echolocation for orientation and feeding, hearing deficits could lead to stranding. We report on the results of auditory evoked potential measurements from eight species of odontocete cetaceans that were found stranded or severely entangled in fishing gear during the period 2004 through 2009. Approximately 57% of the bottlenose dolphins and 36% of the rough-toothed dolphins had significant hearing deficits with a reduction in sensitivity equivalent to severe (70–90 dB) or profound (>90 dB) hearing loss in humans. The only stranded short-finned pilot whale examined had profound hearing loss. No impairments were detected in seven Risso's dolphins from three different stranding events, two pygmy killer whales, one Atlantic spotted dolphin, one spinner dolphin, or a juvenile Gervais' beaked whale. Hearing impairment could play a significant role in some cetacean stranding events, and the hearing of all cetaceans in rehabilitation should be tested

    Cultivating epizoic diatoms provides insights into the evolution and ecology of both epibionts and hosts

    Get PDF
    11 pages, 3 figures, 1 table, supplementary information https://doi.org/10.1038/s41598-022-19064-0.-- Data availability: DNA sequence data generated for this study are published on the NCBI GenBank online sequence depository under the accession numbers listed in Table S1. Additional micrographs and cleaned voucher material from the sequenced cultures are available from lead author MPAOur understanding of the importance of microbiomes on large aquatic animals—such as whales, sea turtles and manatees—has advanced considerably in recent years. The latest observations indicate that epibiotic diatom communities constitute diverse, polyphyletic, and compositionally stable assemblages that include both putatively obligate epizoic and generalist species. Here, we outline a successful approach to culture putatively obligate epizoic diatoms without their hosts. That some taxa can be cultured independently from their epizoic habitat raises several questions about the nature of the interaction between these animals and their epibionts. This insight allows us to propose further applications and research avenues in this growing area of study. Analyzing the DNA sequences of these cultured strains, we found that several unique diatom taxa have evolved independently to occupy epibiotic habitats. We created a library of reference sequence data for use in metabarcoding surveys of sea turtle and manatee microbiomes that will further facilitate the use of environmental DNA for studying host specificity in epizoic diatoms and the utility of diatoms as indicators of host ecology and health. We encourage the interdisciplinary community working with marine megafauna to consider including diatom sampling and diatom analysis into their routine practicesFinancial support for sequencing and SEM comes from the Jane and the Roland Blumberg Centennial Professorship in Molecular Evolution at UT Austin and the US Department of Defense (grant number W911NF-17-2-0091). Sampling in South Africa was done with partial financial support from The Systematics Association (UK) through the Systematics Research Fund Award granted to RM (2017 and 2020). Work in the Adriatic Sea was supported by Croatian Science Foundation, project UIP-05-2017-5635 (TurtleBIOME). KF has been fully supported by the “Young researchers' career development project – training of doctoral students” of the CSF funded by the EU from the European Social Fund. NJR was funded by the Spanish government (AEI) through the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000928-S)Peer reviewe

    Movements and Dive Patterns of a Rehabilitated Risso’s dolphin, \u3ci\u3eGrampus griseus\u3c/i\u3e, in the Gulf of Mexico and Atlantic Ocean

    Get PDF
    Risso’s dolphins (Grampus griseus) occur throughout the world in tropical and temperate waters. The best estimates of abundance for Risso’s dolphins are 1,589 (CV = 0.27) for the northern Gulf of Mexico and 20,479 (CV = 0.59) for the U.S. Atlantic Ocean (Waring et al. 2006). G. griseus is the fourth most abundant cetacean species in the oceanic waters of the northern Gulf and is found in all seasons (Mullin et al. 1994, 2004; Maze-Foley and Mullin 2006). Risso’s dolphins typically can be found over the continental shelf edge and the upper continental slope, where sea surface temperatures exceed 10◦C (Baumgartner 1997, Kruse et al. 1999). They frequent areas of high seafloor relief, where they may feed on mesopelagic and vertically migrating cephalopods (Norris and Dohl 1980, Clarke and Pascoe 1985, Clarke 1986), but no previous studies of diving behavior of Rissos’s dolphins have been reported (Baird 2002). Their oceanic distribution limits opportunities for systematic study of movements and dive patterns

    Evaluation of the use of metallothionein as a biomarker for detecting physiological responses to mercury exposure in the bonnethead, Sphyrna tiburo

    No full text
    Previous studies have demonstrated that sharks, perhaps more so than any other fishes, are capable of bioaccumulating the non-essential toxic metal mercury (Hg) to levels that threaten the health of human seafood consumers. However, few studies have explored the potential effects of Hg accumulation in sharks themselves. Therefore, the goal of this study was to examine if physiological effects occur in sharks in response to environmentally relevant levels of Hg exposure. To address this goal, the relationship between muscle Hg concentrations and muscle/hepatic levels of metallothionein (MT), a widely used protein biomarker of toxic metal exposure in fish, was examined in bonnetheads, Sphyrna tiburo, from three Florida estuaries. Total Hg concentrations in bonnethead muscle, as determined using thermal decomposition and atomic absorption spectrometry, ranged from 0.22 to 1.78 μg/g wet weight and were correlated with animal size. These observations were consistent with earlier studies on Florida bonnetheads, illustrating that they experience bioaccumulation of Hg, often to levels that threaten the health of these animals or consumers of their meat. However, despite this, MT concentrations measured using Western blot analysis were not correlated with muscle Hg concentrations. These results suggest that either environmentally relevant levels of Hg exposure and uptake are below the physiological threshold for inducing effects in sharks or MT is a poor biomarker of Hg exposure in these fishes. Of these two explanations, the latter is favored based on a growing body of evidence that questions the use of MTs as specific indicators of Hg exposure and effects in fish. © 2014 Springer Science+Business Media Dordrecht
    corecore