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Evaluating sea turtle health can be challenging due to an incomplete understanding of pathophysiologic responses in these
species. Proteome characterization of clinical plasma samples can provide insights into disease progression and prospective
biomarker targets. A TMT-10-plex-LC–MS/MS platform was used to characterize the plasma proteome of five, juvenile, green
turtles (Chelonia mydas) and compare qualitative and quantitative protein changes during moribund and recovered states.
The 10 plasma samples yielded a total of 670 unique proteins. Using ≥1.2-fold change in protein abundance as a benchmark
for physiologic upregulation or downregulation, 233 (34.8%) were differentially regulated in at least one turtle between
moribund and recovered states. Forty-six proteins (6.9%) were differentially regulated in all five turtles with two proteins
(0.3%) demonstrating a statistically significant change. A principle component analysis showed protein abundance loosely
clustered between moribund samples or recovered samples and for turtles that presented with trauma (n = 3) or as intestinal
floaters (n = 2). Gene Ontology terms demonstrated that moribund samples were represented by a higher number of proteins
associated with blood coagulation, adaptive immune responses and acute phase response, while recovered turtle samples
included a relatively higher number of proteins associated with metabolic processes and response to nutrients. Abundance
levels of 48 proteins (7.2%) in moribund samples significantly correlated with total protein, albumin and/or globulin levels
quantified by biochemical analysis. Differentially regulated proteins identified with immunologic and physiologic functions
are discussed for their possible role in the green turtle pathophysiologic response and for their potential use as diagnostic
biomarkers. These findings enhance our ability to interpret sea turtle health and further progress conservation, research and
rehabilitation programs for these ecologically important species.
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Introduction
The ability to assess and monitor sea turtle health is an
important component of many conservation programs. This
includes performing health surveys to characterize popula-
tion fitness, defining associations between turtle health and
environmental conditions and examining the health of debil-
itated turtles undergoing veterinary care, rehabilitation and
release (Herbst and Jacobson, 2003; Stringer et al., 2010;
Camacho et al., 2013). These data can become important
when developing policy changes, educational outreach and
veterinary care protocols (Kock et al., 1996; Deem et al.,
2001). Although sea turtle population numbers have declined
worldwide throughout the past century (IUCN, 2020), recent
increases in a number of select populations provide confi-
dence that these continued conservation efforts can result in
long-term successes (Mazaris et al., 2017).

To date, clinical ante-mortem evaluation of sea turtle
health largely involves haematology and blood biochemistry
(Bolten and Bjorndal, 1992; Herbst and Jacobson, 2003;
Deem et al., 2009; Anderson et al., 2011; Stacey and
Innis, 2017). These assays are useful in many respects and
continue to increase our understanding of disease in turtles.
However, they are also complicated by the use of analytes
and technologies that were originally developed for more
traditional veterinary species. Analyte levels do not always
represent the same physiologic change in sea turtles that they
do in mammals and reference intervals vary between sea turtle
species, geographical location, age, gender, breeding status
and diet (Bolten and Bjorndal, 1992; Herbst and Jacobson,
2003; Deem et al., 2009; Anderson et al., 2011; Stacy et al.,
2018). This limitation can complicate data interpretation,
especially with animals that may exhibit non-specific or
subclinical signs of disease. Conservation, rehabilitation and
research programs would benefit from a more complete
understanding of the pathophysiology of disease in sea turtles
and how to best differentiate healthy and diseased states
diagnostically.

The pathophysiologic response of warm- and cold-blooded
vertebrates is driven by coordinated upregulation and down-
regulation of plasma-derived inflammatory, metabolic and
structural proteins (Marancik et al., 2013; van Altena et al.,
2016; Geyer et al., 2016). Monitoring how these proteins
change in abundance and type over the course of disease can
provide useful information regarding disease pathophysiol-
ogy and development of clinical signs (Pierson et al., 2018;
Coleman et al., 2020). Additionally, identifying individual
proteins or panels of proteins that exhibit specific and reliable
changes in abundance between healthy and diseased states
can be useful as diagnostic biomarkers in humans (Geyer et
al., 2017). Similar conditions may apply to sea turtles and
elucidation of these processes can improve our understanding
of the sea turtle disease response and conditions associated
with morbidity and mortality.

Along with publication of a reference genome (Wang et al.,
2013), the worldwide distribution (Jensen et al., 2019) and
relatively common inclusion of green turtles (Chelonia mydas)
in research and rehabilitation settings make them a relevant
model for studying disease pathophysiology in sea turtles.
There are common clinical presentations of green turtles
including trauma (including boat strikes, entanglement and
shark bites), impaction with marine debris, fibropapillomato-
sis, buoyancy issues, cold stunning, parasitism and bacterial
septicemia (Lackovich et al., 1999; Torrent et al., 2005;
Stamper et al., 2009; Flint et al., 2015; Chapman et al., 2017;
Weisbrod et al., 2020) that allow relatively wide applica-
tion of pathophysiologic metrics compared with other turtle
species. Additionally, these animals represent an important
evolutionary bridge between cold- and warm-blooded ani-
mals (Work et al., 2015). Elucidation of their pathophysio-
logic responses may yield valuable insights regarding immune
system phylogeny in vertebrates.

The goal of this study was to characterize the plasma
proteome of green turtles and to measure the differences in
plasma protein type and abundance as turtles shifted from
moribund to recovered states. A tandem mass tag (TMT) and
shotgun-based nano liquid chromatography–tandem mass
spectrometry (LC–MS/MS)-based platform was chosen for
proteomic analysis. Isobaric tagging is often used to quantify
proteins in clinical samples as it allows multiplexing of up to
10 different samples in one experiment, which significantly
reduces technical variation (Li et al., 2012). In this study, a
global analysis of the green turtle proteome is presented and
proteins with putative immunologic and physiologic func-
tions are discussed for their role in health and disease of green
turtles and potential exploration as diagnostic biomarkers.

Materials and methods
Clinical history
Five juvenile green turtles found debilitated off the east-
ern coast of Florida presented to the Loggerhead Marinelife
Center (Juno Beach, FL) for treatment and rehabilitation
(Table 1). Turtles were maintained outdoors in 1200–3600-
L fibreglass tanks on a flow-through system utilizing natural
sea water at ambient ocean temperature except that in winter
the incoming water was heated when needed to maintain
the water temperature >22◦C. In addition to a daily diet of
shrimp or squid and capelin (Table 1), turtles were supple-
mented with Mazuri® Sea Turtle Supplements and calcium
(Risacal-D, Rising Pharmaceuticals Inc., Allendale, NJ).

Blood samples were collected from the dorsal cervical sinus
from each turtle upon admission and just prior to release
(Table 1) using a 22 gauge, a 1-inch needle and a 3-cc syringe.
The blood was immediately placed into 2-mL lithium heparin
tubes and samples were centrifuged at ∼4200 × g (5000 rpm)
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Table 1: Clinical history, husbandry and plasma biochemistry data for five green turtles (Chelonia mydas) sampled at Loggerhead Marinelife
Center

Turtle # Diagnosis Stranding date Stranding
mass (kg),
SCL (cm)

Presenting
biochemistry
results (g/dL)

Release date Release mass
(kg), SCL (cm)

Diet

Turtle 1 Trauma 1/16/2018 2.1, 25.9 TP: 2.4
Albumin: 0.9
Globulins: 1.5

5/8/2018 2.7, 27.5 30% shrimp
70% capelin

Turtle 2 Intestinal
floater

11/18/2017 23.4, 57.2 TP: 5.4
Albumin:1.5
Globulins: 3.9

1/23/2018 24.4, 57.8 33% shrimp
67% capelin

Turtle 3 Intestinal
floater

1/7/2015 19.6, 50.1 TP: 5.4
Albumin: 1.5
Globulins: 3.9

12/2/2015 19.4, 50.4 33% shrimp
67% capelin

Turtle 4 Trauma 9/16/2019 2.8, 28.7 TP: 3.2
Albumin: 1.2
Globulins: 2.0

12/4/2019 2.9, 29.3 33% squid
67% capelin

Turtle 5 Shark
trauma

10/6/2019 2.9, 29.1 TP: 2.3
Albumin: 1.0
Globulins: 1.3

12/11/2019 3.6, 31.4 30% squid
70% capelin

TP indicates total protein and SCLstandard indicates standard straight carapace length.

for 8 min using an LW Scientific C5 centrifuge. A 0.5-mL
portion of plasma was stored at −80◦C for up to 48 months
to ensure stability (Townsend et al., 2020) for proteomic
analysis. A portion of the plasma sample collected at admis-
sion was used to run plasma biochemistry on an IDEXX
Catalyst DX Chemistry Analyzer (Turtles 1, 2, 4, 5) or Abaxis
VetScan VS2 (Turtle 3) biochemistry analyser (Table 1). For
this study, total protein, albumin and globulin levels were
analysed and compared with proteomic data collected from
the same plasma sample.

Proteomic analysis
A plasma proteomic analysis was performed at Cornell Uni-
versity Proteomics and Metabolomics Facility (Ithaca, NY).
Plasma protein concentrations were estimated by the Brad-
ford method (Bradford, 1976) and qualitatively visualized
through standard 1D gel separation techniques.

Protein expression changes were quantified by TMT 10-
plex profiling. In total, 100-μL aliquots of each of the 10
samples were labelled with TMT 10-plex tags. The mix
tags labelled samples were constructed by first dimensional
high pH RP separation of tryptic peptide mixtures by Ulti-
mate3000 MDLC platform with built-in fraction collection
option, autosampler and UV detection (Dionex, Sunnyvale,
CA). The TMT tryptic peptides were reconstituted in 20-
mM ammonium formate (NH4FA) pH 9.5 in water (buffer
A) and loaded onto an XTerra® MS C18 column (3.5 μm,
2.1 × 150 mm, in water) (Waters Corp, Milford, MA) with
buffer A and 80% acetonitrile (ACN)/20% 20-mM NH4FA
(buffer B).

Liquid chromatography was performed using a gradient
from 10% to 45% of buffer B for 30 min at a flow rate
200 μL/min. Fractions were collected at 1 min intervals in a
96-well plate and pooled based on UV absorbance at 214 nm.
Fractions were pooled by disparate first dimension fractions
(retention time multiplexing) using concatenation strategy. All
pooled peptide fractions were dried and reconstituted in 2%
ACN/0.5% formic acid for nano LC–MS/MS analysis.

Nano LC–MS/MS analysis was carried out on equal mix-
tures of tag labelled digests using an LTQ-Orbitrap Velos
mass spectrometer (Thermo Fisher Scientific, San Jose, CA)
equipped with nano ion source via high energy collision dis-
sociation (HCD) and interfaced with an UltiMate3000 RSLC
nano system (Dionex, Sunnyvale, CA). In total, 10-μL aliquots
of each pH RP peptide fraction were injected onto a PepMap
C18 trap column (5 μm, 300 μm × 5 mm) for desalting at
20 μL/min flow rate. Fractions were then separated on a
PepMap C-18 RP nano column (3 μm, 75 μm × 15 cm) and
eluted for 90 min in a gradient of 5%e 38% ACN in 0.1%
formic acid at 300 μL/min followed by a 3-min ramping to
95% ACN-0.1% FA and a 5-min holding at 95% ACN-0.1%
FA. The column was re-equilibrated with 2% ACN-0.1% FA
for 20 min prior to the next run.

The eluted peptides were detected by Orbitrap through
nano ion source containing a 10-mm analyte emitter (New
Objective, Woburn, MA). The Orbitrap Velos was operated
in positive ion mode with nano spray voltage set at 1.5 kV
and source temperature at 275◦C with nitrogen as the col-
lision gas. Calibration was performed internally using the
background ion signal at m/z 445.120025 as a lock mass
or externally using a Fourier transform (FT) mass analyser.
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The instrument was run on data-dependent acquisition mode
using FT mass analyser for survey MS scans of precursor
ions followed by 10 data-dependent HCD-MS/MS scans for
precursor peptides with multiple charged ions above a thresh-
old ion count of 7500 with normalized collision energy
of 45%. MS survey scans were conducted at a resolution
of 30 000 FWHM at m/z 400 for the mass range of m/z
400e1400 and MS/MS scans were conducted at 7500 reso-
lution for the mass range of m/z 100e2000. All data were
acquired under Xcalibur 2.1 operation software (Thermo
Fisher Scientific, San Jose, CA). All MS and MS/MS raw
spectra data from TMT experiments were searched using
PD2.3 (Thermo Fisher Scientific, Bremen, Germany) with
SEQUEST HT searching engine. Processing workflow for
reporter ions quantification in PD 2.3 was used for pro-
tein identification and protein relative quantitation analysis.
Database searches were performed against the green turtle
draft genome (https://www.genome.jp). Resulting proteins
were considered confidently identified if more than two pep-
tides were recognized, the protein false discovery rate was
<0.01 and the protein was quantified in all samples evaluated.

Bioinformatics and functional annotations
Gene Ontology (GO) terms for ‘biological processes’ asso-
ciated with the identified proteins were examined further
as these provide the most relevant information regarding
disease pathogenesis. The longest amino acid sequence for
each differentially regulated protein was extracted using a
custom script and the DIAMOND protein aligner (Buchfink
et al., 2015) was used to identify pairwise alignments between
our sequences and those of the curated UniProtKB/Swiss-
Prot database (The UniProt Consortium 2019, accessed May
2020). DIAMOND blastp was run in more-sensitive mode
and the single best alignment for each amino acid sequence
was retained. UniProt identifiers generated from pairwise
alignments were then used to retrieve GO biological process
terms associated with each protein. Within the list of dif-
ferentially regulated proteins (see statistical analysis details
below), the number of proteins in moribund and healthy
group associated with each GO term was quantified in R (R
Core Team, 2017, v4.0.0) using the ggplot2 and tidyverse R
packages (Wickham, 2016; Wickham et al., 2019).

Statistical analysis
A 1.2-fold change in protein abundance between moribund
and recovered samples was used as a benchmark to indicate a
physiologically significant change in protein abundance (Lee
et al., 2010; Xiaping et al., 2012). GraphPad Prism 8.3 (San
Diego, CA) and Qlucore Omics Explorer 3.5 (Lund, Sweden)
was used to produce a heatmap and principle component
analysis (PCA), respectively. Proteins that demonstrated a
normal distribution and had ratios that were significantly
different than 1 at a 95% CI were considered differentially
expressed between moribund and recovered groups. Each
protein was analysed individually without assuming a consis-

Figure 1: Heat map demonstrating 197 proteins differentially
regulated in at least one rehabilitating green turtle (Chelonia mydas)
with a 1.2–5.0-fold change between moribund and healthy states;
each turtle is represented by a single column

tent standard deviation (SD). This analysis was limited to 44
proteins found to have consistent, 1.2-fold or greater change
in all five turtles and was examined using GraphPad 8.3. A
Spearman correlation was used to examine the relationships
between protein abundance levels and plasma biochemistry
values for total protein, albumin and globulin using IBM SPSS
Statistics 26 software (SPSS, Inc., Chicago, IL). Differences
were considered statistically significant when P < 0.05.

Results
The 10 plasma samples yielded a total of 488 proteins identi-
fied from 8102 unique peptides (Supplemental File 1). In total,
231/488 (47.3%) proteins were interpreted as having under-
gone a physiologically significantly change in abundance in at
least one turtle between moribund and recovered states. This
included 197 proteins that exhibited a ±1.2–5.0-fold change
(Fig. 1) and 34 proteins with a ±5.1-fold change or higher
(Fig. 2). A PCA showed protein abundance levels loosely
clustered for turtles that were either moribund or recovered
and based on whether turtles presented with trauma or as
intestinal floaters (Fig. 3).

GO terms associated with biologic processes, molecular
function and/or cellular component were obtainable for
169/231 (73.2%) proteins (Supplemental File 2). The
GO terms associated with biologic processes were further
examined for their applicability for defining pathophysiologic
mechanisms occurring in moribund turtle samples. A total
of 87 proteins matched to biologic process GO Terms
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Figure 2: Heat map demonstrating 34 proteins differentially
regulated in at least one rehabilitating green turtle (C. mydas) with
≥5.0-fold change between moribund and healthy states

Figure 3: PCA comparing proteomic profiles between individual
rehabilitating green turtles (C. mydas) and conditions based on 233
differentially regulated proteins

(Supplemental File 2). Sixty of these proteins were shared
between moribund and recovered samples (Fig. 4). Moribund
turtle samples had a relatively higher number of proteins
that matched with GO terms associated with various inflam-
matory processes such as GO:0043123 Positive Regulation
of I-Kappa B kinase/NF-Kappa B signalling, GO:0007597
Blood coagulation, intrinsic pathway, GO:0002250 Adaptive
Immune Responses, GO:0006953 Acute-phase Response

and GO:002576 Platelet Degranulation. In recovered
turtle samples, this included a relatively higher number of
proteins associated with select metabolic processes such
as GO:0044267 Cellular Protein Metabolic Processes,
GO:0007584 Response to Nutrient, GO:0043066 Negative
Regulation of Apoptotic Processes and GO:0042572 Retinol
Metabolic Processes (Fig. 4).

In total, 44/488 (9.0%) proteins demonstrated consistent
upregulation or downregulation patterns in all five mori-
bund turtle samples with at least one sample exhibiting a
physiologically significant change in abundance (Table 2).
Thrombospondin-1 isoform X1 and vitamin K-dependent
protein Z additionally demonstrated a statistically significant
difference in abundance between moribund and recovered
states (adjusted P = 0.04) (Table 2).

Abundance levels of 48/488 (9.8%) proteins in moribund
turtles significantly correlated with total protein (18), albu-
min (32) and/or globulin (18) levels (Table 1) quantified
by biochemical analysis. Statistical confidence in individual
correlation coefficients was low due to the small sample size
(Supplemental File 3) and thus general correlation patterns
were examined. The majority of proteins, 37/48 (77.1%),
negatively correlated with biochemical analyte levels. Proteins
that correlated with total protein also tended to correlate with
globulins (16/48, 33.3%).

Discussion
There is a growing need to understand and more accurately
interpret sea turtle health for rehabilitation, research and con-
servation goals. The objective of this study was to characterize
the plasma proteome of green sea turtles and to describe
changes in protein type and abundance between moribund
and recovered states. Over 450 proteins were identified in
green sea turtle plasma and ∼9% of these proteins were
consistently upregulated or downregulated in all turtles as
they recovered in rehabilitation. This includes proteins with
putative roles in the acute-phase response, innate and adap-
tive immunity and metabolism. Elucidating these patterns
contributes to our understanding of the pathophysiologic
response in sea turtles and provides another foundation for
exploring biomarkers of health and disease.

Heat maps showed roughly one-half of identified proteins
demonstrated some level of physiologic change between mori-
bund and recovered states but trends were not consistent
between all turtles. A coordinated response was more appar-
ent in proteins that exhibited a 1.2-fold to 5.0-fold change
in abundance and trends became less consistent when pro-
teins reached >5.0-fold change. The differences in responses
between turtles was not unexpected as individual biologic
variability has been well described as a limitation in clinical
proteomic studies in humans (Yeh et al., 2017). We aimed to
reduce this variable by using paired moribund and healthy
samples from this same individual for this relatively small
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Table 2: Protein abundance mean and SD for green turtles (Chelonia mydas) demonstrating equivalent expression trends in all five turtles and at
least 1.2-fold difference in abundance from moribund to healthy states in at least one turtle

Accession
number

Protein Abundance
moribund
mean ± SD

Abundance
recovered
mean ± SD

Fold change
mean ± SD

Abundance
difference
P-value

XP_007067898.1 Protein S100-A12 328.4 ± 326.0 37.1 ± 13.3 9.86 ± 8.69

XP_007063716.1 Complement factor H-related protein 2 117.9 ± 100.4 24.7 ± 6.0 5.10 ± 4.56

XP_007053239.1 14-3-3 protein theta 40.3 ± 23.6 10.4 ± 3.6 4.20 ± 2.89

XP_027684798.1 Betaine–homocysteine
S-methyltransferase 1

743.7 ± 889.3 129.6 ± 90.1 5.27 ± 6.50

XP_007069697.1 Triosephosphate isomerase 115.0 ± 122.6 26.5 ± 10.3 3.68 ± 2.56

XP_007070993.1 Actin, cytoplasmic 2 50.6 ± 27.4 16.9 ± 3.4 3.04 ± 1.74

XP_007066059.1 Glycogen phosphorylase, liver form 65.1 ± 43.7 26.3 ± 3.8 2.59 ± 1.88

XP_007071883.1 Isocitrate dehydrogenase [NADP] 133.7 ± 75.2 57.7 ± 8.2 2.72 ± 1.36

XP_027679113.1 Transaldolase 162.4 ± 64.8 84.2 ± 16.3 2.26 ± 1.01

XP_027683601.1 Fibrinogen-like protein 1-like protein 936.3 ± 297.6 589.2 ± 219.0 2.25 ± 0.99

XP_007067024.1 Heat shock cognate 71 kDa protein 468.1 ± 227.2 205.8 ± 26.3 2.14 ± 1.09

XP_007065523.1 Fibrinogen-like protein 1-like protein 285.5 ± 96.5 171.6 ± 73.4 2.22 ± 1.21

XP_007061563.1 Elongation factor 1-alpha 1 0.9 ± 0.3 0.5 ± 0.1 2.26 ± 1.10

XP_027677046.1 Plastin-2 378.7 ± 200.2 198.6 ± 62.6 2.02 ± 1.04

XP_027684709.1 Collagen alpha-1(XII) chain 234.4 ± 119.2 102.5 ± 34.5 1.70 ± 0.68

XP_027690646.1 Cytosolic non-specific dipeptidase 138.8 ± 42.5 89.9 ± 20.4 1.77 ± 0.63

XP_027682462.1 Coagulation factor XIII A chain 172.2 ± 45.1 101.8 ± 27.2 1.65 ± 0.59

XP_007070269.1 Alpha-enolase 58.3 ± 35.8 27.1 ± 13.3 1.93 ± 0.80

XP_007057340.2 Alpha-1-acid glycoprotein 2-like 166.3 ± 81.7 77.3 ± 23.9 1.55 ± 0.38

XP_027687337.1 Thrombospondin-1 isoform X1 104.6 ± 23.4 44.9 ± 17.4 1.72 ± 0.31 0.04

XP_007065783.1 Complement component C6 108.3 ± 23.0 84.2 ± 13.6 1.29 ± 0.26

XP_027678437.1 Lysosome-associated membrane
glycoprotein 2 isoform X1

86.1 ± 35.9 59.7 ± 16.1 1.42 ± 0.26

XP_027675100.1 von Willebrand factor 335.0 ± 90.2 220.1 ± 85.4 1.69 ± 0.81

XP_007071418.2 Carboxypeptidase N subunit 2 isoform X1 130.0 ± 22.6 103.4 ± 23.9 1.28 ± 0.18

XP_027690298.1 Complement C1r subcomponent 165.8 ± 51.8 107.4 ± 17.9 1.55 ± 0.48

XP_027684438.1 Immunoglobulin lambda variable 5-39 355.0 ± 231.2 223.0 ± 130.1 1.54 ± 0.18

XP_027679862.1 Target of Nesh-SH3 isoform X1 85.8 ± 30.3 61.3 ± 16.1 1.38 ± 0.17

XP_027687083.1 Integrin beta-2 181.6 ± 60.3 101.9 ± 10.1 1.75 ± 0.43

XP_007054804.1 Membrane primary amine oxidase 192.4 ± 35.8 157.3 ± 27.8 1.23 ± 0.19

XP_007072391.1 Complement C1s subcomponent 119.5 ± 34.0 79.7 ± 14.6 1.53 ± 0.50

XP_027690386.1 Integrin alpha-L 110.8 ± 53.4 60.9 ± 7.3 1.78 ± 0.75

XP_007069327.1 Phosphatidylcholine-sterol acyltransferase 208.4 ± 96.0 304.4 ± 94.1 −1.63 ± 0.66

XP_007071006.1 Apolipoprotein E 59.6 ± 34.7 94.8 ± 44.3 −1.27 ± 0.21

XP_007065578.1 Serum albumin 87.0 ± 12.1 108.6 ± 8.4 −1.32 ± 0.27

XP_007053770.1 Mannan-binding lectin serine protease 2 110.1 ± 23.8 151.8 ± 23.8 −1.34 ± 0.35

Continued
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Table 2: Continued

Accession
number

Protein Abundance
moribund
mean ± SD

Abundance
recovered
mean ± SD

Fold change
mean ± SD

Abundance
difference
P-value

XP_027685684.1 Protein AMBP 88.8 ± 37.6 111.2 ± 30.4 −1.40 ± 0.17

XP_007057844.1 Vitronectin 83.6 ± 26.2 136.3 ± 24.5 −1.60 ± 0.31

XP_027673810.1 Alpha-2-macroglobulin 108.3 ± 32.8 138.4 ± 30.9 −1.73 ± 0.71

XP_007060524.1 Apolipoprotein A-I 90.9 ± 66.9 155.9 ± 69.6 −1.76 ± 0.64

XP_007057023.2 Ovotransferrin 49.0 ± 10.5 77.9 ± 20.4 −2.13 ± 1.44

XP_007063956.1 Vitamin K-dependent protein Z 39.1 ± 9.5 88.9 ± 20.3 −2.31 ± 0.47 0.04

XP_027688886.1 Apolipoprotein A-IV-like 56.2 ± 26.2 112.1 ± 55.7 −2.22 ± 1.07

XP_007060525.1 Apolipoprotein A-IV 60.4 ± 41.1 287.8 ± 171.4 −7.22 ± 6.34

XP_007061965.1 Collagen alpha-1(I) chain isoform X1 8.0 ± 1.5 93.1 ± 98.9 −11.94 ± 12.22

Proteins with no P-value listed were not statistically significantly different between moribund and healthy states.

Figure 4: Comparison of proteins in samples from moribund and recovered rehabilitating green turtles (C. mydas) associated with a given
biological process GO term

sample size; however, the pathophysiologic response of each
turtle was likely influenced by unique clinical timelines and
disease characteristics. Additionally, environmental variables
play a significant role in poikilothermic sea turtles as physio-

logic condition can be affected by water temperature, repro-
ductive status, turtle size and diet (Bolten and Bjorndal, 1992;
Bullock, 1995; Deem et al., 2009, Stacy et al., 2018). Although
there were no overt patterns appreciated when proteomic
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results were examined in relation to carapace length and the
seasonal variance, the sample size was too small to provide
a statistically relevant comparison; however, these factors
should be considered in future studies. Despite the small sam-
ple size and unique clinical characteristics, trends were still
evident between turtles and PCA showed clustering not only
of moribund and recovered turtles but also between turtles
that were diagnosed with trauma or with gas accumulation in
the intestine. This provides evidence for conserved and likely
aetiology-specific pathophysiologic responses in debilitated
turtles.

GO terms categorized a number of differentially regulated
proteins with purported immunologic and metabolic roles.
As anticipated, the number of proteins corresponding with
inflammatory-associated GO terms was higher in moribund
turtle samples compared with recovered turtle samples. This
included annotations for the acute-phase (GO:0006953) and
adaptive immune responses (GO:0002250, GO:0043123,
GO:0001934). Unexpectedly, recovered turtle samples
demonstrated a higher number of GO terms associated
with complement activity (GO:0030449, GO:0006957,
GO:0006956) and, correspondingly, moribund turtles
showed a higher number of proteins associated with negative
regulation of complement activation (GO:0001869). Indi-
vidually, complement components C6 and C1s, complement
C1r subcomponent and regulatory complement factor H-
related protein were upregulated in all five moribund turtle
samples, indicating that there was an increase in at least
some complement factors. The complement system plays a
universal role in defence against pathogens and clearance
of apoptotic and injured cells in vertebrates (Sunyer and
Lambris, 1998; Noris and Remuzzi, 2013) and upregulation
in moribund turtles would be expected. As a whole, the
complement system has not been well characterized in sea
turtles and there is evidence that species-specific differences
may exist in structure in turtles (Baker et al., 2019). The
relatively high number of GO terms and proteins associated
with complement activity, including differentially regulated
complement components, indicates that this system plays an
important role in the immunologic response of sea turtles and
warrants further characterization.

There were loose groupings within the PCA between the
three turtles that presented with trauma as well as between
the two turtles that presented with gas accumulation in the
intestine. Within this analysis, a number of proteins stood
out as being more greatly associated with one group versus
the other, although the small sample size precluded statistical
analysis. For example, reporter ion S100-A12 abundance
was similar in all recovered turtles (37.1 ± 13.3) regardless
of disease aetiology but demonstrated a 1.9-fold increase in
moribund samples from intestinal floaters and a 15.2-fold
increase in turtles presenting with trauma. S100-A12 is a
calcium binding, pro-inflammatory protein (Khorramdelazad
et al., 2015). Levels serve as a biomarker for a number of
inflammatory conditions (Meijer et al., 2012) and are signif-

icantly associated with cellular damage, trauma and sepsis
in humans (Meijer et al., 2012; Dubois et al., 2019). The
higher plasma levels observed in turtles with traumatic injury
are consistent with the association of S100-A12 with trauma
and possibly secondary bacterial infection of the wounds.
Similarly, complement component C6, complement C1r sub-
component and collagen alpha-1(XII) chain abundance were
1.5-fold, 1.6-fold and 2.5-fold higher in turtles with trauma
compared with intestinal floaters. Whether this is associated
with the level of injury, possible secondary bacterial infections
(Hecke et al., 1997) or other factors requires further study.

There were a number of proteins upregulated in moribund
turtle samples with putative roles in limiting the inflam-
matory response. Thrombospondin-1 isoform X1 was the
most significantly changed protein (P = 0.04) with a 1.7-
fold increase in abundance between recovered and mori-
bund turtle samples. Thrombospondin-1 has well-defined
immunomodulatory roles (Grimbert et al., 2006) and is pre-
dictive in a wide variety of infectious and non-infectious
syndromes in humans (Ohyama et al., 2012; Suh et al., 2012;
Gao et al., 2015; Decker et al., 2020). Its level of statistical
significance in this study suggests it may be substantially
regulated between healthy and moribund states and warrants
examination as a possible non-specific biomarker of disease.
Other immunomodulatory proteins that were increased in
all moribund turtle samples included the acute-phase protein
alpha-1-acid glycoprotein (Hochepied et al., 2003) and heat
shock cognate 71 kDa protein, which has been shown to
respond to protect cells from physiological stressors (Giuliano
et al., 2011). Previous studies have shown upregulation of
heat shock proteins in experimentally heat-stressed logger-
head turtle embryos suggesting their role as biomarkers for
thermotolerance (Tedeschi et al., 2016). The results described
herein suggest heat shock proteins may also be increased in
turtles undergoing other pathophysiologic stressors or injury.

A large number of proteins identified in the green turtle
proteome had putative roles associated with hemostasis.
Moribund samples had a higher number of proteins associ-
ated with the intrinsic coagulation cascade (GO:0007597)
and platelet degranulation (GO:0002576), although pro-
tein numbers that matched to the coagulation cascade
(GO:0007596) were similar between both groups. The anti-
coagulant vitamin-K dependent protein Z was statistically
higher in recovered turtles while two fibrinogen-like proteins
and von Willebrand factor were upregulated in moribund
samples. Upregulation of hemostatic factors during disease
highlights the shared signal pathways between coagulation
and inflammation (Margetic, 2012). Blood coagulation is
one of the oldest evolutionarily conserved processes in
animals, occurring before the appearance of both teleosts and
tetrapods over 430 million years ago (Davidson et al., 2003).
However, there are differences between sea turtle coagulation
and that described in other animals. The intrinsic/contact
activation pathway of the coagulation cascade appears to be
non-functional in sea turtles due to lack of factors XI and
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XII (Soslau et al., 2004). Upregulation of coagulation factor
XII alpha chain in moribund samples, which represents an
intermediary step in the production of activated factor XIIa
(MacQuarrie et al., 2011), may not be representative of factor
XII itself or the peptide sequence was possibly annotated
incorrectly. The impact that hemostatic changes have on
pathophysiologic responses and morbidity in green turtles
may be substantial as indicated by the breadth of changes
observed in the plasma proteome.

There was an overrepresentation of carrier proteins upreg-
ulated in recovered turtle samples, including apolipoprotein E,
apolipoprotein A-I, apolipoprotein A-IV-like, apolipoprotein
A-IV and albumin. Albumin levels and to a lesser extent
apolipoproteins, trended lower in turtles presenting with
trauma than those categorized as intestinal floaters that may
correspond with the severity of tissue injury or length of
anorexia. High-density lipoproteins have roles in transport,
metabolism and tissue repair (Weisgraber, 1994; Kaneko,
1997) and have been designated negative acute-phase proteins
in numerous warm-blooded species (Lindhorst et al., 1997;
Burger and Dayer, 2002; Carpintero et al., 2005). Assuming
that plasma levels in recovered turtles are representative
of homeostatic levels, decreased carrier protein abundance
during moribund states likely represents a shift away from
metabolic and anabolic processes (Sung et al., 2004). Further
characterization may provide guidance for nutritional and
therapeutic support for moribund sea turtles.

In general, the agreement between proteomic and biochem-
ical results was relatively low in moribund samples with only
∼7% of the proteome correlating with total protein, albu-
min and/or globulin levels. This included 18/488 (3.7%) of
proteins that correlated with total protein. This may suggest
that in moribund states, total protein levels are only affected
by a select number of high-abundance proteins. The majority
of correlations were negative, with total protein and globulin
showing similar correlation patterns. This is consistent with
previous data in loggerhead turtles that demonstrates an
underestimation of albumin using bromocresol green bio-
chemistry methods (Müller and Brunnberg, 2010). A larger
sample size is needed to confirm these trends. Samples from
recovered states were not included in this analysis as matched
proteomic and biochemical data were not collected from the
same turtle.

There may be other pathophysiologically important anno-
tations or proteins that were not highlighted in this study
based on the statistical parameters utilized. Approximately
40% of proteins identified in the green turtle proteome did
not significantly match to GO annotations. Confident assess-
ment of biologic, cellular and structural roles within a global
analysis requires a more comprehensive linkage with the
green turtle genome. Additionally, individual proteins may
have been excluded from the analysis due to inconsistent
expression patterns. Serum amyloid A rose almost 100-fold in
one moribund sample but fell 100-fold in another. The large
SD and contradictory trends made it difficult to confidently

conclude it as being pathophysiologically responsive although
it is well known as a highly conserved acute-phase protein of
vertebrates (Sack, 2018). Modifications to the methods used
herein may also provide a more thorough assessment of the
green turtle proteome. For example, abundant proteins were
not depleted prior to TMT analysis. Protein depletion can
uncover smaller abundant proteins that may be otherwise
obscured by the major plasma proteins (Geyer et al., 2016)
but it is also associated with non-specific loss of protein
(Geyer et al., 2016), which is why it was not performed in
this study. Optimally, analyses should include both methods
for complete characterization of the plasma proteome.

The number of differentially regulated proteins identified
in the green turtle plasma proteome that have described
inflammatory, immunologic and physiologic roles is intrigu-
ing. This sets the stage to further explore mechanisms of dis-
ease and to identify potential biomarkers using more targeted
and protein-specific methodologies for analytes of interest.
Further studies utilizing a larger sample size and controls for
variables such as disease aetiology, timeframe, turtle size and
other environmental effects are needed to examine changes
in the context. Additionally, comparisons between sea turtle
species may provide additional biomarker data regarding
conserved and unique disease responses. Further progress in
this area will help drive our understanding of sea turtle patho-
physiology may elucidate important biomarkers of disease.
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