11 research outputs found

    Fifty years of the CERN Proton Synchrotron : Volume 2

    Full text link
    This report sums up in two volumes the first 50 years of operation of the CERN Proton Synchrotron. After an introduction on the genesis of the machine, and a description of its magnet and powering systems, the first volume focuses on some of the many innovations in accelerator physics and instrumentation that it has pioneered, such as transition crossing, RF gymnastics, extractions, phase space tomography, or transverse emittance measurement by wire scanners. The second volume describes the other machines in the PS complex: the proton linear accelerators, the PS Booster, the LEP pre-injector, the heavy-ion linac and accumulator, and the antiproton rings.Comment: 58 pages, published as CERN Yellow Report https://cds.cern.ch/record/1597087?ln=e

    Zeeman-tunable modulation transfer spectroscopy

    Get PDF
    Active frequency stabilization of a laser to an atomic or molecular resonance underpins many modern-day AMO physics experiments. With a flat background and high signal-to-noise ratio, modulation transfer spectroscopy (MTS) offers an accurate and stable method for laser locking. However, despite its benefits, the four-wave mixing process that is inherent to the MTS technique entails that the strongest modulation transfer signals are only observed for closed transitions, excluding MTS from numerous applications. Here we report for the first time, to the best of our knowledge, the observation of a magnetically tunable MTS error signal. Using a simple two-magnet arrangement, we show that the error signal for the Rb87 ????=2→????′=3 cooling transition can be Zeeman-shifted over a range of >15  GHzto any arbitrary point on the rubidium D2 spectrum. Modulation transfer signals for locking to the Rb87 ????=1→????′=2 repumping transition, as well as 1 GHz red-detuned to the cooling transition, are presented to demonstrate the versatility of this technique, which can readily be extended to the locking of Raman and lattice lasers

    Photon correlation transients in a weakly blockaded Rydberg ensemble

    Get PDF
    The nonlinear and non-local effects in atomic Rydberg media under electromagnetically induced transparency (EIT) make it a versatile platform for fundamental studies and applications in quantum information. In this paper, we study the dynamics of a Rydberg-EIT system in an ensemble that allows for more than one Rydberg excitation in the propagation direction. The density of two-level atoms is such that transient superradiant effects occur. We experimentally observe a cross-over between coherent collective emission ('flash') of two-level atoms to a Rydberg dressed regime ('dressed flash') under EIT condition. The complex dynamics are characterised using both intensity and time correlation measurements. We show that while steady-state EIT gives a second order correlation g (2) = 0.79 ± 0.04, the Rydberg-dressed flash exhibits anti-bunching down to 0.2 ± 0.04

    Soliton Microcomb Generation in a III-V Photonic Crystal Cavity

    No full text
    Photonic crystals, material structures in which the dielectric function varies periodically in one, two, or three dimensions, can provide exquisite control over the propagation and confinement of light. By tailoring their band structure, exceptional optical effects can be achieved, such as slow light propagation or, through the creation of photonic bandgaps, optical cavities with both a high quality factor and a small mode volume. Photonic crystal cavities have been used to realize compact nano-lasers and achieve strong coupling to quantum emitters, such as semiconductor quantum dots, color centers, or cold atoms. A useful attribute of photonic crystals is the ability to create chirped mirrors. Chirping has underpinned advances in ultra-fast lasers based on bulk mirrors, but has yet to be fully exploited in integrated photonics, where it could provide a means to engineer otherwise unattainable dispersion profiles for a range of nonlinear optical applications, including soliton frequency comb generation. The vast majority of integrated resonators for frequency combs make use of microring geometries, where only waveguide width and height are varied to engineer dispersion. Generation of frequency combs has been demonstrated with one-dimensional photonic crystal cavities made of silicon nitride, but the low index contrast prevents formation of broad soliton combs. We overcome these challenges by using a photonic-crystal Fabry-P\'erot resonator made of gallium phosphide, a material with a high refractive index and a Kerr nonlinearity 200 times larger than that of silicon nitride. We employ chirped photonic crystal mirrors to provide anomalous dispersion. With subharmonic pulsed pumping at an average power of 23.6 mW, we are able to access stable dissipative Kerr frequency combs. We demonstrate soliton formation with a 3-dB bandwidth of 3.0 THz, corresponding to a pulse duration of 60 fs

    Ultrafast tunable lasers using lithium niobate integrated photonics

    No full text
    Early works1 and recent advances in thin-film lithium niobate (LiNbO3) on insulator have enabled low-loss photonic integrated circuits2,3, modulators with improved half-wave voltage4,5, electro-optic frequency combs6 and on-chip electro-optic devices, with applications ranging from microwave photonics to microwave-to-optical quantum interfaces7. Although recent advances have demonstrated tunable integrated lasers based on LiNbO3 (refs. 8,9), the full potential of this platform to demonstrate frequency-agile, narrow-linewidth integrated lasers has not been achieved. Here we report such a laser with a fast tuning rate based on a hybrid silicon nitride (Si3N4)-LiNbO3 photonic platform and demonstrate its use for coherent laser ranging. Our platform is based on heterogeneous integration of ultralow-loss Si3N4 photonic integrated circuits with thin-film LiNbO3 through direct bonding at the wafer level, in contrast to previously demonstrated chiplet-level integration10, featuring low propagation loss of 8.5 decibels per metre, enabling narrow-linewidth lasing (intrinsic linewidth of 3 kilohertz) by self-injection locking to a laser diode. The hybrid mode of the resonator allows electro-optic laser frequency tuning at a speed of 12 × 1015 hertz per second with high linearity and low hysteresis while retaining the narrow linewidth. Using a hybrid integrated laser, we perform a proof-of-concept coherent optical ranging (FMCW LiDAR) experiment. Endowing Si3N4 photonic integrated circuits with LiNbO3 creates a platform that combines the individual advantages of thin-film LiNbO3 with those of Si3N4, which show precise lithographic control, mature manufacturing and ultralow loss11,12.ISSN:0028-0836ISSN:1476-468

    A heterogeneously integrated lithium niobate-on-silicon nitride photonic platform

    No full text
    The availability of thin-film lithium niobate on insulator (LNOI) and advances in processing have led to the emergence of fully integrated LiNbO3 electro-optic devices. Yet to date, LiNbO3 photonic integrated circuits have mostly been fabricated using non-standard etching techniques and partially etched waveguides, that lack the reproducibility achieved in silicon photonics. Widespread application of thin-film LiNbO3 requires a reliable solution with precise lithographic control. Here we demonstrate a heterogeneously integrated LiNbO3 photonic platform employing wafer-scale bonding of thin-film LiNbO3 to silicon nitride (Si3N4) photonic integrated circuits. The platform maintains the low propagation loss (<0.1 dB/cm) and efficient fiber-to-chip coupling (<2.5 dB per facet) of the Si3N4 waveguides and provides a link between passive Si3N4 circuits and electro-optic components with adiabatic mode converters experiencing insertion losses below 0.1 dB. Using this approach we demonstrate several key applications, thus providing a scalable, foundry-ready solution to complex LiNbO3 integrated photonic circuits.ISSN:2041-172

    Fifty years of the CERN Proton Synchrotron: Volume 1

    No full text
    This report sums up in two volumes the first 50 years of operation of the CERN Proton Synchrotron. After an introduction on the genesis of the machine, and a description of its magnet and powering systems, the first volume focuses on some of the many innovations in accelerator physics and instrumentation that it has pioneered, such as transition crossing, RF gymnastics, extractions, phase space tomography, or transverse emittance measurement by wire scanners. The second volume describes the other machines in the PS complex: the proton linear accelerators, the PS Booster, the LEP pre-injector, the heavy-ion linac and accumulator, and the antiproton rings

    High resolution ancient sedimentary DNA shows that alpine plant diversity is associated with human land use and climate change

    No full text
    International audienceThe European Alps are highly rich in species, but their future may be threatened by ongoing changes in human land use and climate. Here, we reconstructed vegetation, temperature, human impact and livestock over the past ~12,000 years from Lake Sulsseewli, based on sedimentary ancient plant and mammal DNA, pollen, spores, chironomids, and microcharcoal. We assembled a highly-complete local DNA reference library (PhyloAlps, 3923 plant taxa), and used this to obtain an exceptionally rich sed aDNA record of 366 plant taxa. Vegetation mainly responded to climate during the early Holocene, while human activity had an additional influence on vegetation from 6 ka onwards. Land-use shifted from episodic grazing during the Neolithic and Bronze Age to agropastoralism in the Middle Ages. Associated human deforestation allowed the coexistence of plant species typically found at different elevational belts, leading to levels of plant richness that characterise the current high diversity of this region. Our findings indicate a positive association between low intensity agropastoral activities and precipitation with the maintenance of the unique subalpine and alpine plant diversity of the European Alps
    corecore