8 research outputs found
Future directions for deep ocean climate science and evidence-based decision making
Introduction: A defining aspect of the Intergovernmental Panel on Climate Change (IPCC) assessment reports (AR) is a formal uncertainty language framework that emphasizes higher certainty issues across the reports, especially in the executive summaries and short summaries for policymakers. As a result, potentially significant risks involving understudied components of the climate system are shielded from view. Methods: Here we seek to address this in the latest, sixth assessment report (AR6) for one such component—the deep ocean—by summarizing major uncertainties (based on discussions of low confidence issues or gaps) regarding its role in our changing climate system. The goal is to identify key research priorities to improve IPCC confidence levels in deep ocean systems and facilitate the dissemination of IPCC results regarding potentially high impact deep ocean processes to decision-makers. This will accelerate improvement of global climate projections and aid in informing efforts to mitigate climate change impacts. An analysis of 3,000 pages across the six selected AR6 reports revealed 219 major science gaps related to the deep ocean. These were categorized by climate stressor and nature of impacts. Results: Half of these are biological science gaps, primarily surrounding our understanding of changes in ocean ecosystems, fisheries, and primary productivity. The remaining science gaps are related to uncertainties in the physical (32%) and biogeochemical (15%) ocean states and processes. Model deficiencies are the leading cited cause of low certainty in the physical ocean and ice states, whereas causes of biological uncertainties are most often attributed to limited studies and observations or conflicting results. Discussion: Key areas for coordinated effort within the deep ocean observing and modeling community have emerged, which will improve confidence in the deep ocean state and its ongoing changes for the next assessment report. This list of key “known unknowns” includes meridional overturning circulation, ocean deoxygenation and acidification, primary production, food supply and the ocean carbon cycle, climate change impacts on ocean ecosystems and fisheries, and ocean-based climate interventions. From these findings, we offer recommendations for AR7 to avoid omitting low confidence-high risk changes in the climate system
Early career ocean professionals declaration on Ocean Negative Carbon Emissions for our ocean and future
This paper highlights the urgent need to accelerate research and action on ocean carbon sinks through human intervention, known as Global Ocean Negative Carbon Emissions (Global-ONCE) Programme, as a vital strategy in global efforts to mitigate climate change. Achieving 'net zero' by 2050 cannot rely on emission reductions alone, emphasising the necessity of complementary approaches. Global-ONCE's mission extends beyond scientific exploration. It embodies a profound commitment to protecting and restoring blue carbon ecosystems, as well as implementing ocean-based solutions that are sustainable, equitable, and inclusive. Early Career Ocean Professionals (ECOPs) are at the heart of these efforts, and their innovative approaches, technical expertise, and passion make them indispensable leaders in advancing ONCE initiatives. ECOPs bridge the gap between science and society, playing a relevant role in integrating cutting-edge research, technological advancements, and community-driven action to address climate threats. By bringing together diverse perspectives and leveraging their interdisciplinary expertise, ECOPs ensure ONCE strategies are grounded in scientific rigour and practical feasibility. Through advocacy, education, and collaboration, ECOPs not only spearhead research and innovation but also inspire collective action to safeguard our oceans. This paper amplifies the critical role of ECOPs as agents of change and calls for a unified global commitment to harness the ocean's potential for a climate-resilient future
Fostering diversity, equity, and inclusion in interdisciplinary marine science
Interdisciplinary marine research is pivotal for addressing ocean sustainability challenges but may exclude diverse socio-economic, cultural, or identity groups. Drawing on perspectives of marine Early Career Researchers, we highlight the importance of Diversity, Equity, and Inclusion (DEI) in advancing interdisciplinary marine science and present ten recommendations to enhance DEI. As our ocean faces increasing threats, fostering DEI within this domain is not merely an aspirational goal but an ethical imperative
Recommended from our members
Uncrewed surface vehicles in the Global Ocean Observing System: a new frontier for observing and monitoring at the air-sea interface
Observing air-sea interactions on a global scale is essential for improving Earth system forecasts. Yet these exchanges are challenging to quantify for a range of reasons, including extreme conditions, vast and remote under-sampled locations, requirements for a multitude of co-located variables, and the high variability of fluxes in space and time. Uncrewed Surface Vehicles (USVs) present a novel solution for measuring these crucial air-sea interactions at a global scale. Powered by renewable energy (e.g., wind and waves for propulsion, solar power for electronics), USVs have provided navigable and persistent observing capabilities over the past decade and a half. In our review of 200 USV datasets and 96 studies, we found USVs have observed a total of 33 variables spanning physical, biogeochemical, biological and ecological processes at the air-sea transition zone. We present a map showing the global proliferation of USV adoption for scientific ocean observing. This review, carried out under the auspices of the ‘Observing Air-Sea Interactions Strategy’ (OASIS), makes the case for a permanent USV network to complement the mature and emerging networks within the Global Ocean Observing System (GOOS). The Observations Coordination Group (OCG) overseeing GOOS has identified ten attributes of an in-situ global network. Here, we discuss and evaluate the maturation of the USV network towards meeting these attributes. Our article forms the basis of a roadmap to formalise and guide the global USV community towards a novel and integrated ocean observing frontier
Cohesiveness of the Nigerian Mahin mud coast sediment: Implications for erodibility and morphodynamic modelling
Recommended from our members
Future directions for deep ocean climate science and evidence-based decision making
Peer reviewed: TrueIntroductionA defining aspect of the Intergovernmental Panel on Climate Change (IPCC) assessment reports (AR) is a formal uncertainty language framework that emphasizes higher certainty issues across the reports, especially in the executive summaries and short summaries for policymakers. As a result, potentially significant risks involving understudied components of the climate system are shielded from view.MethodsHere we seek to address this in the latest, sixth assessment report (AR6) for one such component—the deep ocean—by summarizing major uncertainties (based on discussions of low confidence issues or gaps) regarding its role in our changing climate system. The goal is to identify key research priorities to improve IPCC confidence levels in deep ocean systems and facilitate the dissemination of IPCC results regarding potentially high impact deep ocean processes to decision-makers. This will accelerate improvement of global climate projections and aid in informing efforts to mitigate climate change impacts. An analysis of 3,000 pages across the six selected AR6 reports revealed 219 major science gaps related to the deep ocean. These were categorized by climate stressor and nature of impacts.ResultsHalf of these are biological science gaps, primarily surrounding our understanding of changes in ocean ecosystems, fisheries, and primary productivity. The remaining science gaps are related to uncertainties in the physical (32%) and biogeochemical (15%) ocean states and processes. Model deficiencies are the leading cited cause of low certainty in the physical ocean and ice states, whereas causes of biological uncertainties are most often attributed to limited studies and observations or conflicting results.DiscussionKey areas for coordinated effort within the deep ocean observing and modeling community have emerged, which will improve confidence in the deep ocean state and its ongoing changes for the next assessment report. This list of key “known unknowns” includes meridional overturning circulation, ocean deoxygenation and acidification, primary production, food supply and the ocean carbon cycle, climate change impacts on ocean ecosystems and fisheries, and ocean-based climate interventions. From these findings, we offer recommendations for AR7 to avoid omitting low confidence-high risk changes in the climate system.</jats:sec
Future directions for deep ocean climate science and evidence-based decision making
International audienceIntroduction A defining aspect of the Intergovernmental Panel on Climate Change (IPCC) assessment reports (AR) is a formal uncertainty language framework that emphasizes higher certainty issues across the reports, especially in the executive summaries and short summaries for policymakers. As a result, potentially significant risks involving understudied components of the climate system are shielded from view. Methods Here we seek to address this in the latest, sixth assessment report (AR6) for one such component—the deep ocean—by summarizing major uncertainties (based on discussions of low confidence issues or gaps) regarding its role in our changing climate system. The goal is to identify key research priorities to improve IPCC confidence levels in deep ocean systems and facilitate the dissemination of IPCC results regarding potentially high impact deep ocean processes to decision-makers. This will accelerate improvement of global climate projections and aid in informing efforts to mitigate climate change impacts. An analysis of 3,000 pages across the six selected AR6 reports revealed 219 major science gaps related to the deep ocean. These were categorized by climate stressor and nature of impacts. Results Half of these are biological science gaps, primarily surrounding our understanding of changes in ocean ecosystems, fisheries, and primary productivity. The remaining science gaps are related to uncertainties in the physical (32%) and biogeochemical (15%) ocean states and processes. Model deficiencies are the leading cited cause of low certainty in the physical ocean and ice states, whereas causes of biological uncertainties are most often attributed to limited studies and observations or conflicting results. Discussion Key areas for coordinated effort within the deep ocean observing and modeling community have emerged, which will improve confidence in the deep ocean state and its ongoing changes for the next assessment report. This list of key “known unknowns” includes meridional overturning circulation, ocean deoxygenation and acidification, primary production, food supply and the ocean carbon cycle, climate change impacts on ocean ecosystems and fisheries, and ocean-based climate interventions. From these findings, we offer recommendations for AR7 to avoid omitting low confidence-high risk changes in the climate system
Early career ocean professionals declaration on Ocean Negative Carbon Emissions for our ocean and future
This paper highlights the urgent need to accelerate research and action on ocean carbon sinks through human intervention, known as Global Ocean Negative Carbon Emissions (Global-ONCE) Programme, as a vital strategy in global efforts to mitigate climate change. Achieving 'net zero' by 2050 cannot rely on emission reductions alone, emphasising the necessity of complementary approaches. Global-ONCE's mission extends beyond scientific exploration. It embodies a profound commitment to protecting and restoring blue carbon ecosystems, as well as implementing ocean-based solutions that are sustainable, equitable, and inclusive. Early Career Ocean Professionals (ECOPs) are at the heart of these efforts, and their innovative approaches, technical expertise, and passion make them indispensable leaders in advancing ONCE initiatives. ECOPs bridge the gap between science and society, playing a relevant role in integrating cutting-edge research, technological advancements, and community-driven action to address climate threats. By bringing together diverse perspectives and leveraging their interdisciplinary expertise, ECOPs ensure ONCE strategies are grounded in scientific rigour and practical feasibility. Through advocacy, education, and collaboration, ECOPs not only spearhead research and innovation but also inspire collective action to safeguard our oceans. This paper amplifies the critical role of ECOPs as agents of change and calls for a unified global commitment to harness the ocean's potential for a climate-resilient future
