17 research outputs found

    SREB, a GATA Transcription Factor That Directs Disparate Fates in Blastomyces dermatitidis Including Morphogenesis and Siderophore Biosynthesis

    Get PDF
    Blastomyces dermatitidis belongs to a group of human pathogenic fungi that exhibit thermal dimorphism. At 22°C, these fungi grow as mold that produce conidia or infectious particles, whereas at 37°C they convert to budding yeast. The ability to switch between these forms is essential for virulence in mammals and may enable these organisms to survive in the soil. To identify genes that regulate this phase transition, we used Agrobacterium tumefaciens to mutagenize B. dermatitidis conidia and screened transformants for defects in morphogenesis. We found that the GATA transcription factor SREB governs multiple fates in B. dermatitidis: phase transition from yeast to mold, cell growth at 22°C, and biosynthesis of siderophores under iron-replete conditions. Insertional and null mutants fail to convert to mold, do not accumulate significant biomass at 22°C, and are unable to suppress siderophore biosynthesis under iron-replete conditions. The defect in morphogenesis in the SREB mutant was independent of exogenous iron concentration, suggesting that SREB promotes the phase transition by altering the expression of genes that are unrelated to siderophore biosynthesis. Using bioinformatic and gene expression analyses, we identified candidate genes with upstream GATA sites whose expression is altered in the null mutant that may be direct or indirect targets of SREB and promote the phase transition. We conclude that SREB functions as a transcription factor that promotes morphogenesis and regulates siderophore biosynthesis. To our knowledge, this is the first gene identified that promotes the conversion from yeast to mold in the dimorphic fungi, and may shed light on environmental persistence of these pathogens

    Haematological consequences of acute uncomplicated falciparum malaria: a WorldWide Antimalarial Resistance Network pooled analysis of individual patient data

    Get PDF
    Background: Plasmodium falciparum malaria is associated with anaemia-related morbidity, attributable to host, parasite and drug factors. We quantified the haematological response following treatment of uncomplicated P. falciparum malaria to identify the factors associated with malarial anaemia. Methods: Individual patient data from eligible antimalarial efficacy studies of uncomplicated P. falciparum malaria, available through the WorldWide Antimalarial Resistance Network data repository prior to August 2015, were pooled using standardised methodology. The haematological response over time was quantified using a multivariable linear mixed effects model with nonlinear terms for time, and the model was then used to estimate the mean haemoglobin at day of nadir and day 7. Multivariable logistic regression quantified risk factors for moderately severe anaemia (haemoglobin < 7 g/dL) at day 0, day 3 and day 7 as well as a fractional fall ≥ 25% at day 3 and day 7. Results: A total of 70,226 patients, recruited into 200 studies between 1991 and 2013, were included in the analysis: 50,859 (72.4%) enrolled in Africa, 18,451 (26.3%) in Asia and 916 (1.3%) in South America. The median haemoglobin concentration at presentation was 9.9 g/dL (range 5.0–19.7 g/dL) in Africa, 11.6 g/dL (range 5.0–20.0 g/dL) in Asia and 12.3 g/dL (range 6.9–17.9 g/dL) in South America. Moderately severe anaemia (Hb < 7g/dl) was present in 8.4% (4284/50,859) of patients from Africa, 3.3% (606/18,451) from Asia and 0.1% (1/916) from South America. The nadir haemoglobin occurred on day 2 post treatment with a mean fall from baseline of 0.57 g/dL in Africa and 1.13 g/dL in Asia. Independent risk factors for moderately severe anaemia on day 7, in both Africa and Asia, included moderately severe anaemia at baseline (adjusted odds ratio (AOR) = 16.10 and AOR = 23.00, respectively), young age (age < 1 compared to ≥ 12 years AOR = 12.81 and AOR = 6.79, respectively), high parasitaemia (AOR = 1.78 and AOR = 1.58, respectively) and delayed parasite clearance (AOR = 2.44 and AOR = 2.59, respectively). In Asia, patients treated with an artemisinin-based regimen were at significantly greater risk of moderately severe anaemia on day 7 compared to those treated with a non-artemisinin-based regimen (AOR = 2.06 [95%CI 1.39–3.05], p < 0.001). Conclusions: In patients with uncomplicated P. falciparum malaria, the nadir haemoglobin occurs 2 days after starting treatment. Although artemisinin-based treatments increase the rate of parasite clearance, in Asia they are associated with a greater risk of anaemia during recovery

    Genomic profiling of malignant peritoneal mesothelioma reveals recurrent alterations in epigenetic regulatory genes BAP1, SETD2, and DDX3X

    No full text
    Malignant mesothelioma is a rare cancer that arises from the mesothelial cells that line the pleural cavity and less commonly from the peritoneal lining of the abdomen and pelvis. Most pleural mesotheliomas arise in patients with a history of asbestos exposure, whereas the association of peritoneal mesotheliomas with exposure to asbestos and other potential carcinogens is less clear, suggesting that the genetic alterations which drive malignant peritoneal mesothelioma may be unique from those in pleural mesothelioma. Treatment options for all malignant mesotheliomas are currently limited, with no known targeted therapies available. To better understand the molecular pathogenesis of malignant peritoneal mesothelioma, we sequenced 510 cancer-related genes in 13 patients with malignant mesothelioma arising in the peritoneal cavity. The most frequent genetic alteration was biallelic inactivation of the BAP1 gene, which occurred in 9/13 cases, with an additional 2 cases demonstrating monoallelic loss of BAP1. All 11 of these cases demonstrated loss of BAP1 nuclear staining by immunohistochemistry, whereas the 2 tumors without BAP1 alteration and all 42 cases of histologic mimics in peritoneum (8 multilocular peritoneal inclusion cyst, 6 well-differentiated papillary mesothelioma of the peritoneum, 16 adenomatoid tumor, and 12 low-grade serous carcinoma of the ovary) demonstrated intact BAP1 nuclear staining. Additional recurrently mutated genes in this cohort of malignant peritoneal mesotheliomas included NF2 (3/13), SETD2 (2/13), and DDX3X (2/13). While these genes are known to be recurrently mutated in pleural mesotheliomas, the frequencies are distinct in peritoneal mesotheliomas, with nearly 85% of peritoneal tumors harboring BAP1 alterations versus only 20-30% of pleural tumors. Together, these findings demonstrate the importance of epigenetic modifiers including BAP1, SETD2, and DDX3X in mesothelial tumorigenesis and suggest opportunities for targeted therapies
    corecore