4,606 research outputs found

    Has Christianity a Future?

    Get PDF

    Metal-Insulator Transition Revisited for Cold Atoms in Non-Abelian Gauge Potentials

    Full text link
    We discuss the possibility of realizing metal-insulator transitions with ultracold atoms in two-dimensional optical lattices in the presence of artificial gauge potentials. Such transitions have been extensively studied for magnetic fields corresponding to Abelian gauges; they occur when the magnetic flux penetrating the lattice plaquette is an irrational multiple of the magnetic flux quantum. Here we present the first study of these transitions for non-Abelian U(2) gauge fields, which can be realized with atoms with two pairs of degenerate internal states. In contrast to the Abelian case, the spectrum and localization transition in the non-Abelian case is strongly influenced by atomic momenta. In addition to determining the localization boundary, the momentum fragments the spectrum and the minimum energy viewed as a function of momentum exhibits a step structure. Other key characteristics of the non-Abelian case include the absence of localization for certain states and satellite fringes around the Bragg peaks in the momentum distribution and an interesting possibility that the transition can be tuned by the atomic momenta.Comment: 4 pages, 4 figures, see http://physics.gmu.edu/~isatija/recentpub.htm for high resolution figure

    Generalized Thermalization in an Integrable Lattice System

    Full text link
    After a quench, observables in an integrable system may not relax to the standard thermal values, but can relax to the ones predicted by the generalized Gibbs ensemble (GGE) [M. Rigol et al., Phys. Rev. Lett. 98, 050405 (2007)]. The GGE has been shown to accurately describe observables in various one-dimensional integrable systems, but the origin of its success is not fully understood. Here we introduce a microcanonical version of the GGE and provide a justification of the GGE based on a generalized interpretation of the eigenstate thermalization hypothesis, which was previously introduced to explain thermalization of nonintegrable systems. We study relaxation after a quench of one-dimensional hard-core bosons in an optical lattice. Exact numerical calculations for up to 10 particles on 50 lattice sites (~10^10 eigenstates) validate our approach.Comment: 8 pages, 9 figures, as publishe

    The Summons to Adventure in Our Modern Life

    Get PDF
    Commencement address given by Charles Clark Stillman, Director, School of Social Administration, Ohio State University, to the Autumn 1938 graduating class of The Ohio State University, University Hall Auditorium, Columbus, Ohio, December 21, 1938

    Frequency-dependent polarizabilities of alkali atoms from ultraviolet through infrared spectral regions

    Full text link
    We present results of first-principles calculations of the frequency-dependent polarizabilities of all alkali atoms for light in the wavelength range 300-1600 nm, with particular attention to wavelengths of common infrared lasers. We parameterize our results so that they can be extended accurately to arbitrary wavelengths above 800 nm. This work is motivated by recent experiments involving simultaneous optical trapping of two different alkali species. Our data can be used to predict the oscillation frequencies of optically-trapped atoms, and particularly the ratios of frequencies of different species held in the same trap. We identify wavelengths at which two different alkali atoms have the same oscillation frequency.Comment: 6 pages, 2 figure

    State-insensitive bichromatic optical trapping

    Full text link
    We propose a scheme for state-insensitive trapping of neutral atoms by using light with two independent wavelengths. In particular, we describe the use of trapping and control lasers to minimize the variance of the potential experienced by a trapped Rb atom in ground and excited states. We present calculated values of wavelength pairs for which the 5s and 5p_{3/2} levels have the same ac Stark shifts in the presence of two laser fields.Comment: 5 pages, 4 figure

    Momentum-space engineering of gaseous Bose-Einstein condensates

    Get PDF
    We show how the momentum distribution of gaseous Bose--Einstein condensates can be shaped by applying a sequence of standing-wave laser pulses. We present a theory, whose validity for was demonstrated in an earlier experiment [L.\ Deng, et al., \prl {\bf 83}, 5407 (1999)], of the effect of a two-pulse sequence on the condensate wavefunction in momentum space. We generalize the previous result to the case of NN pulses of arbitrary intensity separated by arbitrary intervals and show how these parameters can be engineered to produce a desired final momentum distribution. We find that several momentum distributions, important in atom-interferometry applications, can be engineered with high fidelity with two or three pulses.Comment: 13 pages, 4 figure

    Probing the circulation of ring-shaped Bose-Einstein condensates

    Get PDF
    This paper reports the results of a theoretical and experimental study of how the initial circulation of ring-shaped Bose-Einstein condensates (BECs) can be probed by time-of-flight (TOF) images. We have studied theoretically the dynamics of a BEC after release from a toroidal trap potential by solving the 3D Gross-Pitaevskii (GP) equation. The trap and condensate characteristics matched those of a recent experiment. The circulation, experimentally imparted to the condensate by stirring, was simulated theoretically by imprinting a linear azimuthal phase on the initial condensate wave function. The theoretical TOF images were in good agreement with the experimental data. We find that upon release the dynamics of the ring--shaped condensate proceeds in two distinct phases. First, the condensate expands rapidly inward, filling in the initial hole until it reaches a minimum radius that depends on the initial circulation. In the second phase, the density at the inner radius increases to a maximum after which the hole radius begins slowly to expand. During this second phase a series of concentric rings appears due to the interference of ingoing and outgoing matter waves from the inner radius. The results of the GP equation predict that the hole area is a quadratic function of the initial circulation when the condensate is released directly from the trap in which it was stirred and is a linear function of the circulation if the trap is relaxed before release. These scalings matched the data. Thus, hole size after TOF can be used as a reliable probe of initial condensate circulation. This connection between circulation and hole size after TOF will facilitate future studies of atomtronic systems that are implemented in ultracold quantum gases.Comment: 9 pages, 9 figure

    Accurate determination of electric-dipole matrix elements in K and Rb from Stark shift measurements

    Full text link
    Stark shifts of potassium and rubidium D1 lines have been measured with high precision by Miller et al [1]. In this work, we combine these measurements with our all-order calculations to determine the values of the electric-dipole matrix elements for the 4p_j-3d_j' transitions in K and for the 5p_j-4d_j' transitions in Rb to high precision. The 4p_1/2-3d_3/2 and 5p_1/2-4d_3/2 transitions contribute on the order of 90% to the respective polarizabilities of the np_1/2 states in K and Rb, and the remaining 10% can be accurately calculated using the relativistic all-order method. Therefore, the combination of the experimental data and theoretical calculations allows us to determine the np-(n-1)d matrix elements and their uncertainties. We compare these values with our all-order calculations of the np-(n-1)d matrix elements in K and Rb for a benchmark test of the accuracy of the all-order method for transitions involving nd states. Such matrix elements are of special interest for many applications, such as determination of magic wavelengths in alkali-metal atoms for state-insensitive cooling and trapping and determination of blackbody radiation shifts in optical frequency standards with ions.Comment: 5 page
    corecore