58 research outputs found

    Mutational analysis of the RB1 gene in Moroccan patients with retinoblastoma

    Get PDF
    PURPOSE: Retinoblastoma (RB), the most common intraocular tumor occurring in infancy and early childhood, is most often related to mutations in the RB1 gene. In this study, we screened the RB1 germline mutations in 41 unrelated Moroccan patients with retinoblastoma, 25 heritable cases, and 16 sporadic unilateral cases. METHODS: After complete ophthalmic examinations were performed and consent obtained, DNA was extracted from peripheral blood, and screening of RB1 mutations was performed with PCR direct sequencing of the promoter and the 27 coding exons of the RB1 gene. RESULTS: We identified ten germline mutations in 10/41 (24.39%) unrelated patients, among which three had not been previously reported. The mutation detection rate was 40% (10/25) in the heritable cases and 0% (0/16) in the sporadic unilateral cases. Of these mutations, six were nonsense, and three were frameshifts, all associated with severe phenotypes resulting in bilateral and multifocal tumors. One splice site mutation was found in a familial case associated with a low expressivity phenotype resulting in unilateral and unifocal tumors. Moreover, eight intronic variants were identified, three of which were novel. CONCLUSIONS: This first report of RB1 gene screening in Moroccan patients with retinoblastoma shows a comparable mutational spectrum to those reported previously, which has evident importance for managing patients with retinoblastoma and their families

    AP4 deficiency: A novel form of neurodegeneration with brain iron accumulation?

    Get PDF
    OBJECTIVE: To describe the clinico-radiological phenotype of 3 patients harboring a homozygous novel AP4M1 pathogenic mutation. METHODS: The 3 patients from an inbred family who exhibited early-onset developmental delay, tetraparesis, juvenile motor function deterioration, and intellectual deficiency were investigated by magnetic brain imaging using T1-weighted, T2-weighted, T2*-weighted, fluid-attenuated inversion recovery, susceptibility weighted imaging (SWI) sequences. Whole-exome sequencing was performed on the 3 patients. RESULTS: In the 3 patients, brain imaging identified the same pattern of bilateral SWI hyposignal of the globus pallidus, concordant with iron accumulation. A novel homozygous nonsense mutation was identified in AP4M1, segregating with the disease and leading to truncation of half of the adap domain of the protein. CONCLUSIONS: Our results suggest that AP4M1 represents a new candidate gene that should be considered in the neurodegeneration with brain iron accumulation (NBIA) spectrum of disorders and highlight the intersections between hereditary spastic paraplegia and NBIA clinical presentations

    Mutations in the m-AAA proteases AFG3L2 and SPG7 are causing isolated dominant optic atrophy.

    Get PDF
    OBJECTIVE: To improve the genetic diagnosis of dominant optic atrophy (DOA), the most frequently inherited optic nerve disease, and infer genotype-phenotype correlations. METHODS: Exonic sequences of 22 genes were screened by new-generation sequencing in patients with DOA who were investigated for ophthalmology, neurology, and brain MRI. RESULTS: We identified 7 and 8 new heterozygous pathogenic variants in SPG7 and AFG3L2. Both genes encode for mitochondrial matricial AAA (m-AAA) proteases, initially involved in recessive hereditary spastic paraplegia type 7 (HSP7) and dominant spinocerebellar ataxia 28 (SCA28), respectively. Notably, variants in AFG3L2 that result in DOA are located in different domains to those reported in SCA28, which likely explains the lack of clinical overlap between these 2 phenotypic manifestations. In comparison, the SPG7 variants identified in DOA are interspersed among those responsible for HSP7 in which optic neuropathy has previously been reported. CONCLUSIONS: Our results position SPG7 and AFG3L2 as candidate genes to be screened in DOA and indicate that regulation of mitochondrial protein homeostasis and maturation by m-AAA proteases are crucial for the maintenance of optic nerve physiology

    Bioinformatics Tools and Databases to Assess the Pathogenicity of Mitochondrial DNA Variants in the Field of Next Generation Sequencing

    Get PDF
    The development of next generation sequencing (NGS) has greatly enhanced the diagnosis of mitochondrial disorders, with a systematic analysis of the whole mitochondrial DNA (mtDNA) sequence and better detection sensitivity. However, the exponential growth of sequencing data renders complex the interpretation of the identified variants, thereby posing new challenges for the molecular diagnosis of mitochondrial diseases. Indeed, mtDNA sequencing by NGS requires specific bioinformatics tools and the adaptation of those developed for nuclear DNA, for the detection and quantification of mtDNA variants from sequence alignment to the calling steps, in order to manage the specific features of the mitochondrial genome including heteroplasmy, i.e., coexistence of mutant and wildtype mtDNA copies. The prioritization of mtDNA variants remains difficult, relying on a limited number of specific resources: population and clinical databases, and in silico tools providing a prediction of the variant pathogenicity. An evaluation of the most prominent bioinformatics tools showed that their ability to predict the pathogenicity was highly variable indicating that special efforts should be directed at developing new bioinformatics tools dedicated to the mitochondrial genome. In addition, massive parallel sequencing raised several issues related to the interpretation of very low mtDNA mutational loads, discovery of variants of unknown significance, and mutations unrelated to patient phenotype or the co-occurrence of mtDNA variants. This review provides an overview of the current strategies and bioinformatics tools for accurate annotation, prioritization and reporting of mtDNA variations from NGS data, in order to carry out accurate genetic counseling in individuals with primary mitochondrial diseases

    Dominant ACO2 mutations are a frequent cause of isolated optic atrophy.

    Get PDF
    Biallelic mutations in ACO2, encoding the mitochondrial aconitase 2, have been identified in individuals with neurodegenerative syndromes, including infantile cerebellar retinal degeneration and recessive optic neuropathies (locus OPA9). By screening European cohorts of individuals with genetically unsolved inherited optic neuropathies, we identified 61 cases harbouring variants in ACO2, among whom 50 carried dominant mutations, emphasizing for the first time the important contribution of ACO2 monoallelic pathogenic variants to dominant optic atrophy. Analysis of the ophthalmological and clinical data revealed that recessive cases are affected more severely than dominant cases, while not significantly earlier. In addition, 27% of the recessive cases and 11% of the dominant cases manifested with extraocular features in addition to optic atrophy. In silico analyses of ACO2 variants predicted their deleterious impacts on ACO2 biophysical properties. Skin derived fibroblasts from patients harbouring dominant and recessive ACO2 mutations revealed a reduction of ACO2 abundance and enzymatic activity, and the impairment of the mitochondrial respiration using citrate and pyruvate as substrates, while the addition of other Krebs cycle intermediates restored a normal respiration, suggesting a possible short-cut adaptation of the tricarboxylic citric acid cycle. Analysis of the mitochondrial genome abundance disclosed a significant reduction of the mitochondrial DNA amount in all ACO2 fibroblasts. Overall, our data position ACO2 as the third most frequently mutated gene in autosomal inherited optic neuropathies, after OPA1 and WFS1, and emphasize the crucial involvement of the first steps of the Krebs cycle in the maintenance and survival of retinal ganglion cells

    Pathogenic NR2F1 variants cause a developmental ocular phenotype recapitulated in a mutant mouse model.

    Get PDF
    Pathogenic NR2F1 variants cause a rare autosomal dominant neurodevelopmental disorder referred to as the Bosch-Boonstra-Schaaf Optic Atrophy Syndrome. Although visual loss is a prominent feature seen in affected individuals, the molecular and cellular mechanisms contributing to visual impairment are still poorly characterized. We conducted a deep phenotyping study on a cohort of 22 individuals carrying pathogenic NR2F1 variants to document the neurodevelopmental and ophthalmological manifestations, in particular the structural and functional changes within the retina and the optic nerve, which have not been detailed previously. The visual impairment became apparent in early childhood with small and/or tilted hypoplastic optic nerves observed in 10 cases. High-resolution optical coherence tomography imaging confirmed significant loss of retinal ganglion cells with thinning of the ganglion cell layer, consistent with electrophysiological evidence of retinal ganglion cells dysfunction. Interestingly, for those individuals with available longitudinal ophthalmological data, there was no significant deterioration in visual function during the period of follow-up. Diffusion tensor imaging tractography studies showed defective connections and disorganization of the extracortical visual pathways. To further investigate how pathogenic NR2F1 variants impact on retinal and optic nerve development, we took advantage of an Nr2f1 mutant mouse disease model. Abnormal retinogenesis in early stages of development was observed in Nr2f1 mutant mice with decreased retinal ganglion cell density and disruption of retinal ganglion cell axonal guidance from the neural retina into the optic stalk, accounting for the development of optic nerve hypoplasia. The mutant mice showed significantly reduced visual acuity based on electrophysiological parameters with marked conduction delay and decreased amplitude of the recordings in the superficial layers of the visual cortex. The clinical observations in our study cohort, supported by the mouse data, suggest an early neurodevelopmental origin for the retinal and optic nerve head defects caused by NR2F1 pathogenic variants, resulting in congenital vision loss that seems to be non-progressive. We propose NR2F1 as a major gene that orchestrates early retinal and optic nerve head development, playing a key role in the maturation of the visual system

    Association of Spermatogenic Failure with the b2/b3 Partial AZFc Deletion

    Get PDF
    Infertility affects around 1 in 10 men and in most cases the cause is unknown. The Y chromosome plays an important role in spermatogenesis and specific deletions of this chromosome, the AZF deletions, are associated with spermatogenic failure. Recently partial AZF deletions have been described but their association with spermatogenic failure is unclear. Here we screened a total of 339 men with idiopathic spermatogenic failure, and 256 normozoospermic ancestry-matched men for chromosome microdeletions including AZFa, AZFb, AZFc, and the AZFc partial deletions (gr/gr, b1/b3 and b2/b3)

    Association of the MTHFR A1298C Variant with Unexplained Severe Male Infertility

    Get PDF
    The methylenetetrahydrofolate reductase (MTHFR) gene is one of the main regulatory enzymes involved in folate metabolism, DNA synthesis and remethylation reactions. The influence of MTHFR variants on male infertility is not completely understood. The objective of this study was to analyze the distribution of the MTHFR C677T and A1298C variants using PCR-Restriction Fragment Length Polymorphism (RFLP) in a case group consisting of 344 men with unexplained reduced sperm counts compared to 617 ancestry-matched fertile or normozoospermic controls. The Chi square test was used to analyze the genotype distributions of MTHFR polymorphisms. Our data indicated a lack of association of the C677T variant with infertility. However, the homozygous (C/C) A1298C polymorphism of the MTHFR gene was present at a statistically high significance in severe oligozoospermia group compared with controls (OR = 3.372, 95% confidence interval CI = 1.27–8.238; p = 0.01431). The genotype distribution of the A1298C variants showed significant deviation from the expected Hardy-Weinberg equilibrium, suggesting that purifying selection may be acting on the 1298CC genotype. Further studies are necessary to determine the influence of the environment, especially the consumption of diet folate on sperm counts of men with different MTHFR variants

    Recessive TBC1D24 Mutations Are Frequent in Moroccan Non-Syndromic Hearing Loss Pedigrees.

    Get PDF
    Mutations in the TBC1D24 gene are responsible for four neurological presentations: infantile epileptic encephalopathy, infantile myoclonic epilepsy, DOORS (deafness, onychodystrophy, osteodystrophy, mental retardation and seizures) and NSHL (non-syndromic hearing loss). For the latter, two recessive (DFNB86) and one dominant (DFNA65) mutations have so far been identified in consanguineous Pakistani and European/Chinese families, respectively. Here we report the results of a genetic study performed on a large Moroccan cohort of deaf patients that identified three families with compound heterozygote mutations in TBC1D24. Four novel mutations were identified, among which, one c.641G>A (p.Arg214His) was present in the three families, and has a frequency of 2% in control Moroccan population with normal hearing, suggesting that it acts as an hypomorphic variant leading to restricted deafness when combined with another recessive severe mutation. Altogether, our results show that mutations in TBC1D24 gene are a frequent cause (>2%) of NSHL in Morocco, and that due to its possible compound heterozygote recessive transmission, this gene should be further considered and screened in other deaf cohorts
    corecore