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AP4 deficiency
Anovel formof neurodegeneration with brain iron accumulation?
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Abstract
Objective
To describe the clinico-radiological phenotype of 3 patients harboring a homozygous novel
AP4M1 pathogenic mutation.

Methods
The 3 patients from an inbred family who exhibited early-onset developmental delay, tetra-
paresis, juvenile motor function deterioration, and intellectual deficiency were investigated by
magnetic brain imaging using T1-weighted, T2-weighted, T2*-weighted, fluid-attenuated in-
version recovery, susceptibility weighted imaging (SWI) sequences. Whole-exome sequencing
was performed on the 3 patients.

Results
In the 3 patients, brain imaging identified the same pattern of bilateral SWI hyposignal of the
globus pallidus, concordant with iron accumulation. A novel homozygous nonsense mutation
was identified in AP4M1, segregating with the disease and leading to truncation of half of the
adap domain of the protein.

Conclusions
Our results suggest that AP4M1 represents a new candidate gene that should be considered in
the neurodegeneration with brain iron accumulation (NBIA) spectrum of disorders and
highlight the intersections between hereditary spastic paraplegia and NBIA clinical
presentations.
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Hereditary spastic paraplegias (HSPs) are a heterogeneous
group of neurodegenerative diseases clinically characterized
by progressive lower extremity weakness and spasticity, which
may be isolated (pure HSP) or combined with other neuro-
logic or nonneurological signs (complex HSP).1,2 More than
70 genes have been implicated, emphasizing diverse molec-
ular pathogenic mechanisms.3 In this respect, recessive
mutations in genes encoding the different subunits of adaptor
protein complex-4, (AP4B1, AP4M1, AP4E1, and AP4S1)
have been identified in patients with complex HSP (SPG 47,
50, 51, and 52 respectively).4–8 The AP4-deficiency syndrome
is characterized by progressive spasticity, microcephaly, in-
tellectual deficiency, dysmorphic traits, and growth
retardation,4–8 while epilepsy and peripheral neuropathy
might be associated.4,9 Brain imaging phenotypes reported up
to now are characterized by cerebral atrophy, asymmetric
enlargement of lateral ventricles, white matter loss, and thin
corpus callosum splenium.8–10 Thin and globoid hippocampal
cortex9 and tortuosity of intraextracranial large vessels were
also reported.4

Neurodegeneration with brain iron accumulation (NBIA),
which is characterized by dystonia, parkinsonism, spasticity,
and brain iron accumulation on MRI, represents another
inherited group of neurodegenerative disorders, due to
mutations in 10 genes, with molecular overlaps with HSP.11,12

Here, we report 3 patients from the same kindred who harbor
a homozygous AP4M1 mutation. They exhibit the typical
clinico-radiological phenotype of AP4-deficiency syndrome,
but surprisingly associated with bilateral pallidal iron accu-
mulation on brain imaging, thus establishing a link between
AP4-related complex HSP and NBIA disorders.

Methods
Standard protocol approvals, registrations,
and patient consents
The study was conducted in accordance with the Declaration
of Helsinki and was approved by the local ethical committee.
Written informed consent was obtained from the patients’
legal representatives.

Whole-exome sequencing and brain imaging
Whole-exome sequencing (WES) was performed on the
DNA from the 3 affected patients by Aros Ltd. Homozygous
mutations common to the 3 patients were filtered pro-
gressively for their frequency (<1%), alteration of the open
reading frame (frameshift, splicing, missense, and nonsense
mutations), and ultimately for their localization in the

homozygous regions common to the 3 patients. Sanger se-
quencing allowed for their confirmation and segregation
study in the family.

CT was performed on a 64-section CT scanner (Discov-
ery750 HD; GE Health care, Milwaukee, WI). MRIs were
acquired on a 1.5-T system (AVENTO; Siemens medical
solutions, Erlangen, Germany) as follows: axial slices T2-
weighted, T2*-weighted, fluid-attenuated inversion recovery,
susceptibility weighted imaging (SWI) sequences, and sagittal
slices T1-weighted sequences.

Results
Clinical data
The clinical features of the 3 patients originating from a large
consanguineous Moroccan family (figure 1A) are described in
table. Psychomotor retardation with spasticity of the 4 limbs
was noticed early in life. Clinical examination from the first
year showed spastic tetraplegia, with pyramidal tract signs and
equinovarus. Patients IV-2 and IV-5 sat unaided at 7 months;
patient IV-2 was able to crawl at 2 years but never managed to
walk; her sister IV-5 could walk short distances with unsteady
spastic gait from the age of 5 years. Patient IV-7 sat unaided at
11 months of age and walked at 3 years, with a broad-based
unsteady gait. The patients exhibited stable severe mental
deficiency, without behavioral disturbance. Motor achieve-
ments progressively deteriorated at adolescence, with loss of
the highest motor skills, but without additional cognitive
decline; from that time, bradykinesia, hypomimy, drooling,
and athetoid movements of the hands were also noticed.
Patients IV-5 and IV-7 displayed short stature. Dysmorphic
features (figure 2, Aa, Ba, Ca) were also present. The 3
patients needed assistance to most common daily living
activities.

The following investigations were normal: electro-
myoneurography recording, cardiac ultrasound scan, visual
and auditory evoked potentials, fundus examination, karyo-
type analysis on lymphocytes (cases IV-2, IV-5 and IV-7),
PANK2 and PLA2G6 Sanger sequencing (patient IV-7), and
analyses of mitochondrial enzymatic activities on a muscle
sample (patient IV-2).

Genetic results
Comparison ofWES results performed for patients IV-2, IV-5,
and IV-7 revealed 3 homozygous regions, 1 on chromosome 7
(5.7Mb) and 2 on chromosome 9 (2.25 and 1.31Mb). A total
of 14,753 exonic variants were common to the 3 patients, and
by progressively filtering them, we identified 4,974

Glossary
HSP = hereditary spastic paraplegia; NBIA = neurodegeneration with brain iron accumulation; SWI = susceptibility weighted
imaging; WES = whole-exome sequencing.
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homozygous variants, among which 2,546 were non-
synonymous, frameshift, splicing, or stop variants. Further
filtering for damaging variants with a frequency lower than 1%
identified 3 mutations in the AP4M1, HRNR, and NPIPL3
genes, but only the 1 in AP4M1was located in chromosome 7,
in 1 of the 3 homozygous regions.

This c.916C>T mutation (rs369459721) is leading to
a premature stop codon (p.R306X), truncating the last 147
residues of the protein (figure 1, B and C). It has a global
allelic frequency of 2.4 × 10−5 in the ExAC and a frequency of
3.0 × 10−5 in Non-Finnish European and 9.3 × 10−5 in
African, while it was not encountered in the rest of the world.

Analysis of the homozygous variants located in the 10 known
NBIA genes revealed 2 common variants, located in CP
(rs701753) and PANK (rs3737084), but they were not
damaging, had a frequency higher than 1%, and were located
away from the 3 homozygous regions.

Brain imaging
Brain MRI of the 3 patients showed global cerebral atrophy,
white matter loss, asymmetric ventriculomegaly (figure 2, B,
E, and H), and thinning of the splenium of the corpus

callosum (data not shown J). T1 sequences showed an iso-
intense pattern of the globus pallidus (data not shown). T2
sequences revealed symmetric mild hypointensity of the
globus pallidus, which was significantly accentuated on SWI
sequences (figure 2, Ab, Ac, Bb, Bc, Cb, Cc, D). Patient IV-7’s
CT was normal (data not shown).

Discussion
We identified a homozygous nonsensemutation inAP4M1 in 3
women from the same inbred family by WES. This R306X
mutation deletes the last 147 residues of the protein, truncating
half of the adap domain, an effect similar to that reported in 2
other families who harbored a stop codon truncating the
AP4M1 protein at positions 318 and 338.9 Until now, only 5
different AP4M1 mutations have been reported in 7 families
with a common clinical presentation4,5,9,13–15 (figure 1C). The 3
patients from our study share the same clinical phenotype with
variable severity, consisting in early-onset developmental delay,
tetraparesis, juvenile motor function deterioration, intellectual
deficiency, athetoid upper limb movements, bradykinesia,
and mild dysmorphism, which fits with the previously de-
scribed AP4-deficiency syndrome. Even if the bilateral pallidal

Table Clinical features of 3 AP4M1 individuals

Patient Patient IV-2 Patient IV-5 Patient IV-7

Sex/age at last examination F/25 y F/16 y F/23 y

Perinatal parameter Normal Normal Low birth weight

Seizures No 1 febrile seizure during the second
year of life

1 febrile seizure at 20 m

Age at acquisition of unaided sitting 7 m 7 m 11 m

Highest motor achievements Able to crawl at 2 y Unsteady spastic gait at 5 y Independent broad-based
unsteady gait at 3 y

Motor deterioration/age Unable to crawl at 13 y Assisted gait from 12 y Assisted gait from 15 y

Spasticity and pyramidal tract signs Yes Yes Yes

Equinovarus Yes Yes Yes

Bradykinesia and athetoid movements
of the hands

From adolescence From adolescence From adolescence

Language Short sentences Short sentences Less than 10 words

Behavior Shy and introverted form
adolescence

Normal Smiley

Intellectual deficiency Severe Moderate Severe

Growth parameter at last follow-up Normal Short stature Short stature

Height 160 cm, weight 68 kg Height 150 cm, weight 55 kg Height 143 cm, weight 44 kg

Microcephaly No No Yes

Head circumference 53 cm 52 cm 48.5 cm

Dysmorphism Yes Yes Yes

m = month; y = year.
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hyposignal is mild on T2 sequences and could be interpretated
as physiologic iron accumulation at this age, the substantial
hyposignal on SWI is totally unusual in patients of the same age.
These findings, correlated with the absence of hypersignal on
T1-weighted imaging or CT hyperdensities in the patients, are
strongly suggestive of brain iron overload.

Iron deposits have not been previously reported in patients with
AP4-deficiency syndrome. Nevertheless, magnetic susceptibility
sequences, which can confirm the presence of iron, have not
been performed in most of the reported cases; therefore, this
feature might have been underdiagnosed. A search for homo-
zygous mutations common to the 3 patients in the 10 published
NBIA genes revealed 2 variants located in PANK and CP, but
their frequency and the absence of pathogenicity were somehow
incompatible with their involvement as modifier mutations
switching HSP clinical presentation to NBIA.

Of interest, a patient withAP4E1mutations, whose brainMRI
showed bilateral T2-hypointensity of the globus pallidus, has
already been described.8 This peculiar finding, although not
discussed in the article, strongly suggests iron accumulation in
this AP4E1 patient, as in our 3 AP4M1 patients.

The pathophysiology of HSP involves many cellular path-
ways as cellular transport, nucleotide metabolism, and syn-
apse and axon developments, providing a causative link

between HSP and other neurodegenerative diseases.3,16

Overlaps between HSP and NBIA are well known, as already
reported for cases with mutations in FA2H and C19orf12
genes (SPG 35 and 43, respectively).11,17 The AP-4 complex
is a heterotetramer ubiquitously expressed in the CNS early
in the embryologic and postnatal development and is im-
plicated in vesicle formation, post-Golgi protein trafficking,
and sorting processes.18 Eventually, AP-4 dysfunction might
affect autophagy by disrupting the early steps of endosomal
formation, a process shared with Kufor-Rabeb disease and
beta-propeller protein-associated neurodegeneration, 2
forms of NBIA related to ATP13A2 and WDR45 genes,
respectively.11,12

Moreover, NBIA disorders are probably underdiagnosed,
and the evolution of technologies and practices in radiology
leads to the identification of many new candidate genes
through the incorporation of susceptibility weighted
sequences more frequently in the brain imaging protocols.19

Our study has limitations, especially because of the small
sample size.

Nevertheless, according to our findings in AP4M1 mutated
patients, we recommend that brain MRI with susceptibility
weighted sequences be included in the brain imaging protocol
for patients with suspected HSP and AP4-deficiency syn-
drome to collect a larger group of patients, and we propose

Figure 1 Identification of a novel AP4M1 mutation

(A) Pedigree showing the segregation of the AP4M1 c.916C>T (p.R306X)mutation in the family; black symbols indicate affected patients. (B) Electrophoregrams
showing the wild-type (top), the homozygous mutated (middle), and heterozygous (bottom) sequence of AP4M1. (C) Localization of AP4M1 mutations in the
protein: the structure of the AP4M1 protein (domain and amino acid positions) is described with all the pathogenic missense mutations5,14 (green), nonsense
mutation9,15 (violet), frameshift4,13 (pink flag) mutations reported to date (in black), and in the present cases (in red). HM = homozygous; HT = heterozygous;
WT = wild type.
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that mutations in AP4 genes be considered and screened in
a subset of patients with NBIA spectrum disorders.
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bulbous nose, broad nasal bridge, coarse features, and wide-open mouth. (A.b, B.b, and C.b) Axial T2-weighted sequence showing asymmetric ven-
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abnormality, particularly in occipito parietal areas, are also observed. (A.c, B.c, C.c, and D) Axial susceptibility weighted imaging sequence showing bilateral
intense hyposignal of the globus pallidus, significantly predominant in their medial part (arrows, A.c, B.c, and C.c) compared with the control (D).
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