5 research outputs found

    0365: Non-peptidic prokineticin receptor 1 agonist as a novel cardioprotective therapeutic

    Get PDF
    ObjectiveProkineticins are potent angiogenic peptides that bind to two G protein-coupled receptors to initiate their biological effects. We previously have shown that prokineticin receptor-1 (PKR1) signaling contributes to cardiomyocyte survival or repair in myocardial infarction. Here, we discovered the first non-peptidic PKR1 agonists and examined their effects in mice model of heart diseases.Methods and resultsHerein we identify a selective PKR1 agonist both in vitro and in vivo, utilizing GPCR structure-based virtual screening approach. High Throughput Docking was carried out by GOLD using homology model of PKR1. Asinex gold collection 3D chemical databese (250,000 compounds) was screened by the docking protocol. We provided a strategy with a high potential for in silico identifying one agonist hit. We present here IS20, the first synthetic PKR1 agonist that induces angiogenesis in the presence of PKR1 on the endothelial cells seeded on matrigel. IS20 reduced doxorubicin cytotoxicity in H9C2 cells. IS20 promotes mouse epicardial progenitor cell differentiation into endothelial cells. In vivo IS20 activates Akt in mice heart. IS20 treatment of mice after coronary ligation reduces mortality by 30%.ConclusionThis study identifies a non-peptidic PKR1 agonist as therapeutic target holding promise for treatment of heart diseases

    Prokineticin Receptor-1 Signaling Inhibits Dose- and Time-Dependent Anthracycline-Induced Cardiovascular Toxicity Via Myocardial and Vascular Protection

    Get PDF
    Abstract Background High prevalence of heart failure during and following cancer treatments remains a subject of intense research and therapeutic interest. Objectives This study investigated how different concentrations of doxorubicin (DOX) can affect the function of the cardiac cells. This study also examined whether activation of prokineticin receptor-1 (PKR1) by a nonpeptide agonist, IS20, prevents DOX-induced cardiovascular toxicity in mouse models. Methods We used cultured cardiomyocytes, endothelial cells (ECs), and epicardium-derived progenitor cells (EPDCs) for in vitro, assays and tumor-bearing and acute and chronic toxicity mouse models for in vivo assays. Results Brief exposure to cardiomyocytes with high-dose DOX increases the accumulation of reactive oxygen species (ROS) by inhibiting a detoxification mechanism via stabilization of cytoplasmic NRF2. Prolonged exposure to medium-dose DOX induces apoptosis in cardiomyocytes, ECs, and EPDCs. However, low-dose DOX promotes functional defects without inducing apoptosis in EPDCs and ECs. IS20 alleviates detrimental effects of DOX in cardiac cells via activating AKT or mitogen-activated protein kinase pathways. Genetic or pharmacological inactivation of PKR1 subdues these effects of IS20. In a chronic mouse model of DOX cardiotoxicity, IS20 normalizes an elevated serum marker of cardiotoxicity and vascular and EPDC deficits, attenuates apoptosis and fibrosis, and improves the survival rate and cardiac function. IS20 does not interfere with the cytotoxicity or antitumor effects of DOX in breast cancer lines or in a mouse model of breast cancer but attenuates the decreases in LV diastolic volume induced by acute DOX treatment. Conclusions This study identifies the molecular and cellular signature of dose-dependent DOX-mediated cardiotoxicity and provides evidence that PKR1 is a promising target to combat cardiotoxicity of cancer treatments

    Synthesis of non-peptidic agonists of prokineticin receptor PKR1

    No full text
    Les rĂ©cepteurs couplĂ©s aux protĂ©ines G reprĂ©sentent la plus grande famille de rĂ©cepteurs membranaires. Parmi eux, nous avons choisi d’étudier deux rĂ©cepteurs apparentĂ©s : les rĂ©cepteurs de la prokinĂ©ticine 1 et 2. Ces deux rĂ©cepteurs ont pour ligands des hormones de nature peptidique, divisĂ©es en deux sous-groupes : les prokinĂ©ticines 1 et 2. Ces deux prokinĂ©ticines sont impliquĂ©es dans plusieurs processus physiologiques en se liant Ă  leurs rĂ©cepteurs PKR1 et PKR2. Il a Ă©tĂ© rĂ©cemment montrĂ© que la prokinĂ©ticine 2 pouvait stimuler la prolifĂ©ration et la diffĂ©renciation des cellules souches progĂ©nitrices cardiaques, via les rĂ©cepteurs PKR1 et PKR2. Il a Ă©galement Ă©tĂ© reportĂ© que l’activation de PKR1 protĂšge les cardiomyocytes et les cellules progĂ©nitrices cardiaques de l’apoptose. Afin d’étudier ces effets nous avons synthĂ©tisĂ© des agonistes non-peptidiques du rĂ©cepteur PKR1. Nous avons donc poursuivi les Ă©tudes de pharmacomodulation d’une premiĂšre famille de composĂ©s et dĂ©veloppĂ© une seconde famille d’agonistes potentiels originaux, dĂ©terminĂ©e par des Ă©tudes de modĂ©lisation molĂ©culaire. Une sonde fluorescente a Ă©tĂ© synthĂ©tisĂ©e afin d’évaluer la liaison de nouveaux composĂ©s. Au cours de ces travaux nous avons dĂ©couvert une nouvelle rĂ©action multi-composante permettant la synthĂšse d’un composĂ© dihydropyrrole polyfonctionnel. Nous nous sommes alors intĂ©ressĂ©s Ă  son mĂ©canisme et Ă  sa limitation chimique dans le but de former de nouveaux hĂ©tĂ©rocycles fonctionnalisĂ©s.The G protein-coupled receptors represent the largest familly of membrane receptors. Among them,we choose to study two related receptors: prokineticin receptors 1 and 2. These two receptors have peptidic hormone ligands, divided in two sub-groups: prokineticins 1 and 2. Both prokineticins are involved in many physiological processes by binding to their receptors PKR1 and PKR2. It has recently been shown that prokineticin 2 could stimulate proliferation and differentiation of cardiac progenitor cells. It was also reported that activation of PKR1 protects cardiomyocytes and cardiac progenitor cells from apoptosis. To investigate these effects we synthesized non-peptidic receptor PKR1. We continued pharmacodulation studies of a first familly of compounds and developped a second familly of original potential agonists, determined by molecular modeling studies. A fluorescent probe was synthesized to access the binding of novel compounds. During this work we discovered a new multi-component reaction for the synthesis of a polyfunctional dihydrpyrrol compound. We then interested in the mechanism and its chemical limitation in order to form new functionalized heterocycles

    SynthÚse d'agonistes non-peptidiques du récepteur à la prokinéticine PKR1

    No full text
    The G protein-coupled receptors represent the largest familly of membrane receptors. Among them,we choose to study two related receptors: prokineticin receptors 1 and 2. These two receptors have peptidic hormone ligands, divided in two sub-groups: prokineticins 1 and 2. Both prokineticins are involved in many physiological processes by binding to their receptors PKR1 and PKR2. It has recently been shown that prokineticin 2 could stimulate proliferation and differentiation of cardiac progenitor cells. It was also reported that activation of PKR1 protects cardiomyocytes and cardiac progenitor cells from apoptosis. To investigate these effects we synthesized non-peptidic receptor PKR1. We continued pharmacodulation studies of a first familly of compounds and developped a second familly of original potential agonists, determined by molecular modeling studies. A fluorescent probe was synthesized to access the binding of novel compounds. During this work we discovered a new multi-component reaction for the synthesis of a polyfunctional dihydrpyrrol compound. We then interested in the mechanism and its chemical limitation in order to form new functionalized heterocycles.Les rĂ©cepteurs couplĂ©s aux protĂ©ines G reprĂ©sentent la plus grande famille de rĂ©cepteurs membranaires. Parmi eux, nous avons choisi d’étudier deux rĂ©cepteurs apparentĂ©s : les rĂ©cepteurs de la prokinĂ©ticine 1 et 2. Ces deux rĂ©cepteurs ont pour ligands des hormones de nature peptidique, divisĂ©es en deux sous-groupes : les prokinĂ©ticines 1 et 2. Ces deux prokinĂ©ticines sont impliquĂ©es dans plusieurs processus physiologiques en se liant Ă  leurs rĂ©cepteurs PKR1 et PKR2. Il a Ă©tĂ© rĂ©cemment montrĂ© que la prokinĂ©ticine 2 pouvait stimuler la prolifĂ©ration et la diffĂ©renciation des cellules souches progĂ©nitrices cardiaques, via les rĂ©cepteurs PKR1 et PKR2. Il a Ă©galement Ă©tĂ© reportĂ© que l’activation de PKR1 protĂšge les cardiomyocytes et les cellules progĂ©nitrices cardiaques de l’apoptose. Afin d’étudier ces effets nous avons synthĂ©tisĂ© des agonistes non-peptidiques du rĂ©cepteur PKR1. Nous avons donc poursuivi les Ă©tudes de pharmacomodulation d’une premiĂšre famille de composĂ©s et dĂ©veloppĂ© une seconde famille d’agonistes potentiels originaux, dĂ©terminĂ©e par des Ă©tudes de modĂ©lisation molĂ©culaire. Une sonde fluorescente a Ă©tĂ© synthĂ©tisĂ©e afin d’évaluer la liaison de nouveaux composĂ©s. Au cours de ces travaux nous avons dĂ©couvert une nouvelle rĂ©action multi-composante permettant la synthĂšse d’un composĂ© dihydropyrrole polyfonctionnel. Nous nous sommes alors intĂ©ressĂ©s Ă  son mĂ©canisme et Ă  sa limitation chimique dans le but de former de nouveaux hĂ©tĂ©rocycles fonctionnalisĂ©s

    Catalyst-free three-component synthesis of highly functionalized 2,3-dihydropyrroles

    No full text
    International audienceAn efficient synthesis of fully substituted 2,3-dihydropyrroles has been achieved in one step through the three-component reaction of amines, aromatic aldehydes and α-ketoamides. This atom-economical and catalyst-free reaction is highly stereoselective and generates in a single step underexplored heterocycles. These compounds were examined in an enzymatic assay that led to the identification of potent α-glucosidase inhibitors, thereby demonstrating the utility of this novel methodology in medicinal chemistry
    corecore