170 research outputs found

    Asset encumbrance, bank funding and fragility

    Get PDF
    We model asset encumbrance by banks subject to rollover risk and study the consequences for fragility, funding costs, and prudential regulation. A bank's privately optimal encumbrance choice balances the benefit of expanding profitable yet illiquid investment, funded by cheap long-term senior secured debt, against the cost of greater fragility from runs on unsecured debt. We derive testable implications about encumbrance ratios. The introduction of deposit insurance or wholesale funding guarantees induces excessive encumbrance and fragility. Ex-ante limits on asset encumbrance or ex-post Pigovian taxes eliminate such risk-shifting incentives. Our results shed light on prudential policies currently pursued in several jurisdictions

    Interactions between ecological factors in the developmental environment modulate pupal and adult traits in a polyphagous fly

    Get PDF
    Funding Information Macquarie University. Grant Number: 40310006 Horticulture Innovation Australia. Grant Number: HG14033Peer reviewedPublisher PD

    Tephritid-microbial interactions to enhance fruit fly performance in sterile insect technique programs

    Get PDF
    Background: The Sterile Insect Technique (SIT) is being applied for the management of economically important pest fruit flies (Diptera: Tephritidae) in a number of countries worldwide. The success and cost effectiveness of SIT depends upon the ability of mass-reared sterilized male insects to successfully copulate with conspecific wild fertile females when released in the field. Methods: We conducted a critical analysis of the literature about the tephritid gut microbiome including the advancement of methods for the identification and characterization of microbiota, particularly next generation sequencing, the impacts of irradiation (to induce sterility of flies) and fruit fly rearing, and the use of probiotics to manipulate the fruit fly gut microbiota. Results: Domestication, mass-rearing, irradiation and handling, as required in SIT, may change the structure of the fruit fliesā€™ gut microbial community compared to that of wild flies under field conditions. Gut microbiota of tephritids are important in their hostsā€™ development, performance and physiology. Knowledge of how mass-rearing and associated changes of the microbial community impact the functional role of the bacteria and host biology is limited. Probiotics offer potential to encourage a gut microbial community that limits pathogens, and improves the quality of fruit flies. Conclusions: Advances in technologies used to identify and characterize the gut microbiota will continue to expand our understanding of tephritid gut microbial diversity and community composition. Knowledge about the functions of gut microbes will increase through the use of gnotobiotic models, genome sequencing, metagenomics, metatranscriptomics, metabolomics and metaproteomics. The use of probiotics, or manipulation of the gut microbiota, offers significant opportunities to enhance the production of high quality, performing fruit flies in operational SIT programs

    The genome of Clostridium difficile 5.3

    Get PDF
    Background Clostridium difficile is the leading cause of infectious diarrhea in humans and responsible for large outbreaks of enteritis in neonatal pigs in both North America and Europe. Disease caused by C. difficile typically occurs during antibiotic therapy and its emergence over the past 40 years is linked with the widespread use of broad-spectrum antibiotics in both human and veterinary medicine. Results We sequenced the genome of Clostridium difficile 5.3 using the Illumina Nextera XT and MiSeq technologies. Assembly of the sequence data reconstructed a 4,009,318 bp genome in 27 scaffolds with an N50 of 786 kbp. The genome has extensive similarity to other sequenced C. difficile genomes, but also has several genes that are potentially related to virulence and pathogenicity that are not present in the reference C. difficile strain. Conclusion Genome sequencing of human and animal isolates is needed to understand the molecular events driving the emergence of C. difficile as a gastrointestinal pathogen of humans and food animals and to better define its zoonotic potential

    Commensal microbiota modulates larval foraging behaviour, development rate and pupal production in Bactrocera tryoni

    Get PDF
    Project Raising Q-fly Sterile Insect Technique to World Standard (HG14033) is funded by the Hort Frontiers Fruit Fly Fund, part of the Hort Frontiers strategic partnership initiative developed by Hort Innovation, with co-investment from Macquarie University and contributions from the Australian Government. BN is supported by an international Research Training Program (iRTP) scholarship from Macquarie University (NSW, Australia).Peer reviewedPublisher PD

    Banner News

    Get PDF
    https://openspace.dmacc.edu/banner_news/1438/thumbnail.jp

    Complete Sequences of Multiple-Drug Resistant IncHI2 ST3 Plasmids in Escherichia coli of Porcine Origin in Australia

    Get PDF
    IncHI2 ST3 plasmids are known carriers of multiple antimicrobial resistance genes. Complete plasmid sequences from multiple drug resistant Escherichia coli circulating in Australian swine is however limited. Here we sequenced two related IncHI2 ST3 plasmids, pSDE-SvHI2, and pSDC-F2_12BHI2, from phylogenetically unrelated multiple-drug resistant Escherichia coli strains SvETEC (CC23:O157:H19) and F2_12B (ST93:O7:H4) from geographically disparate pig production operations in New South Wales, Australia. Unicycler was used to co-assemble short read (Illumina) and long read (PacBio SMRT) nucleotide sequence data. The plasmids encoded three drug-resistance loci, two of which carried class 1 integrons. One integron, hosting drfA12-orfF-aadA2, was within a hybrid Tn1721/Tn21, with the second residing within a copper/silver resistance transposon, comprising part of an atypical sul3-associated structure. The third resistance locus was flanked by IS15DI and encoded neomycin resistance (neoR). An oqx-encoding transposon (quinolone resistance), similar in structure to Tn6010, was identified only in pSDC-F2_12BHI2. Both plasmids showed high sequence identity to plasmid pSTM6-275, recently described in Salmonella enterica serotype 1,4,[5],12:i:- that has risen to prominence and become endemic in Australia. IncHI2 ST3 plasmids circulating in commensal and pathogenic E. coli from Australian swine belong to a lineage of plasmids often in association with sul3 and host multiple complex antibiotic and metal resistance structures, formed in part by IS26
    • ā€¦
    corecore