1,261 research outputs found

    Clinical implications of GWAS variants associated with differentiated thyroid cancer

    Get PDF
    The genetic risk of differentiated thyroid cancer (DTC) probably consists of multiple low-penetrance, single-nucleotide polymorphisms (SNP). Such markers are difficult to uncover by linkage analysis but can be revealed by association studies. Genome-wide association studies (GWASs) have uncovered 31 SNPs associated with DTC. These markers carry a low to moderate risk for DTC, but their cumulative effect increases with each successive risk allele. These data support the important contribution of low penetrance variants in the pathogenesis of DTC. Contrary to somatic mutations such as BRAFV600E, germline variants can be ascertained prior to surgical treatment. Therefore, we hypothesise that GWAS SNPs might impact the clinical course of DTC and we can benefit from this knowledge in choosing a treatment strategy. Several associations between clinical factors and GWAS markers have been reported so far. The most important are associations between rs966423 and mortality (HR = 1.60, p = 0.038), extrathyroidal extension (ETE) (OR = 1.57, p = 0.019); rs965513 and tumour diameter (slope of regression 0.14, p = 0.025), lymph node metastasis (OR = 1.59, p = 0.030) and ETE (OR = 1.29, p = 0.045); rs944289 and distant metastasis (OR = 0.58, p = 0.042); and rs116909374 and lymph node metastasis (OR = 0.61, p = 0.016). These findings show that GWAS SNPs are not only the ignition factors (together with environmental factors) for malignant transformation of thyrocytes but might also impact the clinical course of DTC. Surprisingly, it is not always the risk allele for DTC that is associated with worse clinical outcome. The second interesting observation is that GWAS SNPs show different associations with DTC clinical features depending on their histological subtypes. These point to the complexity of DTC with putatively different roles of genes at different stages of DTC development. (Endokrynol Pol 2019; 70 (5): 423–429

    Assessment on experimental bacterial biofilms and in clinical practice of the efficacy of sampling solutions for microbiological testing of endoscopes

    Get PDF
    International audienceOpinions differ on the value of microbiological testing of endoscopes, which varies according to the technique used. We compared the efficacy on bacterial biofilms of sampling solutions used for the surveillance of the contamination of endoscope channels. To compare efficacy, we used an experimental model of a 48-h Pseudomonas biofilm grown on endoscope internal tubing. Sampling of this experimental biofilm was performed with a Tween 80-lecithin-based solution, saline, and sterile water. We also performed a randomized prospective study during routine clinical practice in our hospital sampling randomly with two different solutions the endoscopes after reprocessing. Biofilm recovery expressed as a logarithmic ratio of bacteria recovered on bacteria initially present in biofilm was significantly more effective with the Tween 80-lecithin-based solution than with saline solution (P = 0.002) and sterile water (P = 0.002). There was no significant difference between saline and sterile water. In the randomized clinical study, the rates of endoscopes that were contaminated with the Tween 80-lecithin-based sampling solution and the saline were 8/25 and 1/25, respectively (P = 0.02), and the mean numbers of bacteria recovered were 281 and 19 CFU/100 ml (P = 0.001), respectively. In conclusion, the efficiency and therefore the value of the monitoring of endoscope reprocessing by microbiological cultures is dependent on the sampling solutions used. A sampling solution with a tensioactive action is more efficient than saline in detecting biofilm contamination of endoscopes

    Hyporheic Source and Sink of Nitrous Oxide

    Get PDF
    Nitrous oxide (N2O) is a potent greenhouse gas with an estimated 10% of anthropogenic N2O coming from the hyporheic zone of streams and rivers. However, difficulty in making accurate fine-scale field measurements has prevented detailed understanding of the processes of N2O production and emission at the bedform and flowline scales. Using large-scale, replicated flume experiments that employed high-density chemical concentration measurements, we have been able to refine the current conceptualization of N2O production, consumption, and emission from the hyporheic zone. We present a predictive model based on a Damköhler-type transformation (τ̃) in which the hyporheic residence times (τ) along the flowlines are multiplied by the dissolved oxygen consumption rate constants for those flowlines. This model can identify which bedforms have the potential to produce and emit N2O, as well as the portion and location from which those emissions may occur. Our results indicate that flowlines with τ̃up (τ̃ as the flowline returns to the surface flow) values between 0.54 and 4.4 are likely to produce and emit N2O. Flowlineswith τ̃up values of less than 0.54 will have the same N2O as the surface water and those with values greater than 4.4 will likely sink N2O (reference conditions: 17C, surface dissolved oxygen 8.5 mg/L). N2O production peaks approximately at τ̃ = 1.8. A cumulative density function of τ̃up values for all flowlines in a bedform (or multiple bedforms) can be used to estimate the portion of flowlines, and in turn the portion of the streambed, with the potential to emit N2O

    (Total) Vector Domination for Graphs with Bounded Branchwidth

    Full text link
    Given a graph G=(V,E)G=(V,E) of order nn and an nn-dimensional non-negative vector d=(d(1),d(2),,d(n))d=(d(1),d(2),\ldots,d(n)), called demand vector, the vector domination (resp., total vector domination) is the problem of finding a minimum SVS\subseteq V such that every vertex vv in VSV\setminus S (resp., in VV) has at least d(v)d(v) neighbors in SS. The (total) vector domination is a generalization of many dominating set type problems, e.g., the dominating set problem, the kk-tuple dominating set problem (this kk is different from the solution size), and so on, and its approximability and inapproximability have been studied under this general framework. In this paper, we show that a (total) vector domination of graphs with bounded branchwidth can be solved in polynomial time. This implies that the problem is polynomially solvable also for graphs with bounded treewidth. Consequently, the (total) vector domination problem for a planar graph is subexponential fixed-parameter tractable with respectto kk, where kk is the size of solution.Comment: 16 page

    Analysis of electrically permeable cracks on the interface between two one-dimensional piezoelectric quasicrystals

    Get PDF
    A set of finite number collinear cracks along the interface of two 1D piezoelectric hexagonal quasicrystals is considered. The cracks can have arbitrary lengths and distances between their tips. The problem of linear relationship is formulated and solved in an analytical form. The analytical formula for the ERR have been obtained. The variations of the phonon and phason crack faces displacement jumps, stresses along the interface and the ERR are presented in graph and table form

    Defect-induced activation of symmetry forbidden infrared resonances in individual metallic nanorods

    No full text
    International audienceWe report on the observation of second-order infrared (IR) plasmon resonances in lithographically prepared gold nanorods investigated by means of far-field microscopic IR spectroscopy. In addition to the fundamental antennalike mode, even and odd higher order resonances are observed under normal incidence of light. The activation of even-order modes under normal incidence is surprising since even orders are dipole-forbidden because of their centrosymmetric charge density oscillation. Performing atomic force microscopy and calculations with the boundary element method, we determine that excitation of even modes is enabled by symmetry breaking by structural deviations of the rods from an ideal, straight shape. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3437093
    corecore