18 research outputs found

    Neutrino Physics with JUNO

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purposeunderground liquid scintillator detector, was proposed with the determinationof the neutrino mass hierarchy as a primary physics goal. It is also capable ofobserving neutrinos from terrestrial and extra-terrestrial sources, includingsupernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos,atmospheric neutrinos, solar neutrinos, as well as exotic searches such asnucleon decays, dark matter, sterile neutrinos, etc. We present the physicsmotivations and the anticipated performance of the JUNO detector for variousproposed measurements. By detecting reactor antineutrinos from two power plantsat 53-km distance, JUNO will determine the neutrino mass hierarchy at a 3-4sigma significance with six years of running. The measurement of antineutrinospectrum will also lead to the precise determination of three out of the sixoscillation parameters to an accuracy of better than 1\%. Neutrino burst from atypical core-collapse supernova at 10 kpc would lead to ~5000inverse-beta-decay events and ~2000 all-flavor neutrino-proton elasticscattering events in JUNO. Detection of DSNB would provide valuable informationon the cosmic star-formation rate and the average core-collapsed neutrinoenergy spectrum. Geo-neutrinos can be detected in JUNO with a rate of ~400events per year, significantly improving the statistics of existing geoneutrinosamples. The JUNO detector is sensitive to several exotic searches, e.g. protondecay via the pK++νˉp\to K^++\bar\nu decay channel. The JUNO detector will providea unique facility to address many outstanding crucial questions in particle andastrophysics. It holds the great potential for further advancing our quest tounderstanding the fundamental properties of neutrinos, one of the buildingblocks of our Universe

    Oxygen Induced Phase Transformation in TC21 Alloy with a Lamellar Microstructure

    No full text
    The main objective of the present study was to understand the oxygen ingress in titanium alloys at high temperatures. Investigations reveal that the oxygen diffusion layer (ODL) caused by oxygen ingress significantly affects the mechanical properties of titanium alloys. In the present study, the high-temperature oxygen ingress behavior of TC21 alloy with a lamellar microstructure was investigated. Microstructural characterizations were analyzed through optical microscopy (OM), scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM). Obtained results demonstrate that oxygen-induced phase transformation not only enhances the precipitation of secondary α-phase (αs) and forms more primary α phase (αp), but also promotes the recrystallization of the ODL. It was found that as the temperature of oxygen uptake increases, the thickness of the ODL initially increases and then decreases. The maximum depth of the ODL was obtained for the oxygen uptake temperature of 960 °C. In addition, a gradient microstructure (αp + β + βtrans)/(αp + βtrans)/(αp + β) was observed in the experiment. Meanwhile, it was also found that the hardness and dislocation density in the ODL is higher than that that of the matrix

    Real-Time Onboard 3D State Estimation of an Unmanned Aerial Vehicle in Multi-Environments Using Multi-Sensor Data Fusion

    No full text
    The question of how to estimate the state of an unmanned aerial vehicle (UAV) in real time in multi-environments remains a challenge. Although the global navigation satellite system (GNSS) has been widely applied, drones cannot perform position estimation when a GNSS signal is not available or the GNSS is disturbed. In this paper, the problem of state estimation in multi-environments is solved by employing an Extended Kalman Filter (EKF) algorithm to fuse the data from multiple heterogeneous sensors (MHS), including an inertial measurement unit (IMU), a magnetometer, a barometer, a GNSS receiver, an optical flow sensor (OFS), Light Detection and Ranging (LiDAR), and an RGB-D camera. Finally, the robustness and effectiveness of the multi-sensor data fusion system based on the EKF algorithm are verified by field flights in unstructured, indoor, outdoor, and indoor and outdoor transition scenarios

    Key parameters of gob-side entry retaining by roof cutting in close-distance seam group

    No full text
    Abstract During the process of close-distance seam group mining, the coal pillar in the upper coal seam is a stress-concentrated area, which leads to a loss of stability of the roadway during mining of the lower coal seam. This lack of stability introduces great safety hazards to coal mines. To solve the problem of stress concentration of coal pillars, the method of gob-side entry retaining by roof cutting is proposed to remove the coal pillar. In this study, FLAC3D was used to analyze the depth and angle of pre-split blasting. LS-DYNA was used to analyze the spacing of the blasthole. Using the methods of theoretical analysis and numerical simulation, we determined that the optimal depth of the pre-split blasting was 6 m, the optimal angle for pre-split blasting was 15°, and the optimal spacing of the blasthole was 500 mm. A field test was carried out in the 1010201 ventilation roadway of the Yuwang Coal Mine, China. The on-site peeping results showed that when the spacing of the blasthole is 500 mm, connecting cracks can form under the action of blasting stress. After the working surface is mined, the roof strata could collapse and fill the gob over time when the depth and angle of the pre-split blasting are 6 m and 15°, respectively

    Study on Gas Enrichment Mechanism of Coal Seam Influenced by Vertical Stress on Mountainous Region Condition

    No full text
    The controlling effect of vertical stress of mountainous region on gas occurrence of the coal seam below it has always been ignored. In order to clearly express its influence mechanism, the change laws of depth, stress, and permeability of coal seam pressurised by the overlying mountain were studied based on the Winkler elastic foundation beam theory and seepage theory in the paper. At the same time, the enrichment mechanism of the coal seam pressurised by the overlying mountain was analyzed. The results showed the following: (1) There was a significantly strong correlation between the stress, permeability change rule of the coal seam, burial depth, and surface elevation under such condition. (2) Under the action of the vertical pressure of the mountain, the stress and permeability distribution of the coal seam showed significant nonlinear characteristics. The stress was the greatest under the peak, and the permeability was the smallest. (3) The initial gas content value was controlled by the permeability and the stress of the coal seam in the situation. Moreover, the field practice showed that under the action of vertical pressure of the mountain, the evaluation law of gas content was coupling with the surface elevation of the overlying mountain. In addition, the gas emission change law during the excavation of the driving face also showed the same characteristics. The results might be of great significance for the development and utilization of coal-bed gas and the safe exploitation of coal resources

    Efficient purification and concentration of viruses from a large body of high turbidity seawater

    No full text
    Marine viruses are the most abundant entities in the ocean and play crucial roles in the marine ecological system. However, understanding of viral diversity on large scale depends on efficient and reliable viral purification and concentration techniques. Here, we report on developing an efficient method to purify and concentrate viruses from large body of high turbidity seawater. The developed method characterizes with high viral recovery efficiency, high concentration factor, high viral particle densities and high-throughput, and is reliable for viral concentration from high turbidity seawater. Recovered viral particles were used directly for subsequent analysis by epifluorescence microscopy, transmission electron microscopy and metagenomic sequencing. Three points are essential for this method: • The sampled seawater (>150 L) was initially divided into two parts, water fraction and settled matter fraction, after natural sedimentation. • Both viruses in the water fraction concentrated by tangential flow filtration (TFF) and viruses isolated from the settled matter fraction were considered as the whole viral community in high turbidity seawater. • The viral concentrates were re-concentrated by using centrifugal filter device in order to obtain high density of viral particles

    Discovery of the Highly Selective and Potent STAT3 Inhibitor for Pancreatic Cancer Treatment

    No full text
    Signal transducer and activator of transcription 3 (STAT3) is an attractive cancer therapeutic target. Unfortunately, targeting STAT3 with small molecules has proven to be very challenging, and for full activation of STAT3, the cooperative phosphorylation of both tyrosine 705 (Tyr705) and serine 727 (Ser727) is needed. Further, a selective inhibitor of STAT3 dual phosphorylation has not been developed. Here, we identified a low nanomolar potency and highly selective small-molecule STAT3 inhibitor that simultaneously inhibits both STAT3 Tyr705 and Ser727 phosphorylation. YY002 potently inhibited STAT3-dependent tumor cell growth in vitro and achieved potent suppression of tumor growth and metastasis in vivo. More importantly, YY002 exhibited favorable pharmacokinetics, an acceptable safety profile, and superior antitumor efficacy compared to BBI608 (STAT3 inhibitor that has advanced into phase III trials). For the mechanism, YY002 is selectively bound to the STAT3 Src Homology 2 (SH2) domain over other STAT members, which strongly suppressed STAT3 nuclear and mitochondrial functions in STAT3-dependent cells. Collectively, this study suggests the potential of small-molecule STAT3 inhibitors as possible anticancer therapeutic agents
    corecore