46 research outputs found

    Mechanism Design with Predicted Task Revenue for Bike Sharing Systems

    Full text link
    Bike sharing systems have been widely deployed around the world in recent years. A core problem in such systems is to reposition the bikes so that the distribution of bike supply is reshaped to better match the dynamic bike demand. When the bike-sharing company or platform is able to predict the revenue of each reposition task based on historic data, an additional constraint is to cap the payment for each task below its predicted revenue. In this paper, we propose an incentive mechanism called {\em TruPreTar} to incentivize users to park bicycles at locations desired by the platform toward rebalancing supply and demand. TruPreTar possesses four important economic and computational properties such as truthfulness and budget feasibility. Furthermore, we prove that even when the payment budget is tight, the total revenue still exceeds or equals the budget. Otherwise, TruPreTar achieves 2-approximation as compared to the optimal (revenue-maximizing) solution, which is close to the lower bound of at least 2\sqrt{2} that we also prove. Using an industrial dataset obtained from a large bike-sharing company, our experiments show that TruPreTar is effective in rebalancing bike supply and demand and, as a result, generates high revenue that outperforms several benchmark mechanisms.Comment: Accepted by AAAI 2020; This is the full version that contains all the proof

    Conditional Deletion of PDK1 in the Forebrain Causes Neuron Loss and Increased Apoptosis during Cortical Development

    Get PDF
    Decreased expression but increased activity of PDK1 has been observed in neurodegenerative disease. To study in vivo function of PDK1 in neuron survival during cortical development, we generate forebrain-specific PDK1 conditional knockout (cKO) mice. We demonstrate that PDK1 cKO mice display striking neuron loss and increased apoptosis. We report that PDK1 cKO mice exhibit deficits on several behavioral tasks. Moreover, PDK1 cKO mice show decreased activities for Akt and mTOR. These results highlight an essential role of endogenous PDK1 in the maintenance of neuronal survival during cortical development

    The VMC survey - XVIII : Radial dependence of the low-mass, 0.57-0.82 Msun stellar mass function in the galactic globular cluster 47 Tucanae

    Get PDF
    We use near-infrared observations obtained as part of the Visible and Infrared Survey Telescope for Astronomy (VISTA) Survey of the Magellanic Clouds (VMC), as well as two complementary Hubble Space Telescope (HST) data sets, to study the luminosity and mass functions (MFs) as a function of clustercentric radius of the main-sequence stars in the Galactic globular cluster 47 Tucanae. The HST observations indicate a relative deficit in the numbers of faint stars in the central region of the cluster compared with its periphery, for 18.75 ≤ mF606W ≤ 20.9 mag (corresponding to a stellar mass range of 0.55 < m*/M⊙ < 0.73). The stellar number counts at 6.‧7 from the cluster core show a deficit for 17.62 ≤ mF606W ≤ 19.7 mag (i.e., 0.65 < m*/M⊙ < 0.82), which is consistent with expectations from mass segregation. The VMC-based stellar MFs exhibit power-law shapes for masses in the range 0.55 < m*/M⊙ < 0.82. These power laws are characterized by an almost constant slope, α. The radial distribution of the power-law slopes α thus shows evidence of the importance of both mass segregation and tidal stripping, for both the first- and second-generation stars in 47 Tuc.Peer reviewedFinal Accepted Versio

    Finite-Time Stabilization of Dynamic Nonholonomic Wheeled Mobile Robots with Parameter Uncertainties

    No full text
    The finite-time stabilization problem of dynamic nonholonomic wheeled mobile robots with parameter uncertainties is considered for the first time. By the equivalent coordinate transformation of states, an uncertain 5-order chained form system can be obtained, based on which a discontinuous switching controller is proposed such that all the states of the robots can be stabilized to the origin equilibrium point within any given settling time. The systematic strategy combines the theory of finite-time stability with a new switching control design method. Finally, the simulation result illustrates the effectiveness of the proposed controller

    The Dependence of Isothermal ω Precipitation on the Quenching Rate in a Metastable β-Ti Alloy

    No full text
    The precipitation behavior of the α strengthening phase in metastable β-Ti alloys is highly dependent on heat treatment parameters such as quenching rate, heating rate and ageing temperature. In this paper we have investigated the influence of quenching rate on the formation of isothermal ω precipitates that have been regarded as potent nucleant sites for α precipitation. The results show that the β-solutionized alloy contains a β matrix with a layer structured morphology. Regular atomic movement of the (002) β plane along the direction was observed in the alloy. The increase in quenching rate refines the thickness of layers, subsequently influencing the nucleation and growth of isothermal ω precipitates after ageing treatment. The high quenching rate promotes the occurrence of ω precipitation, broadens the stage of ω precipitation and increases the number density of ω precipitates. Since the isothermal ω phase provides a heterogeneous nucleation site for α precipitates, it is inferred that the quenching rate may indirectly influence the mechanical properties of metastable β-Ti alloy
    corecore