88 research outputs found

    Hyperspectral Image Representation and Processing With Binary Partition Trees

    Full text link

    Fuzzy fusion techniques for linear features detection in multitemporal SAR images

    Full text link

    Challenges and Opportunities of Multimodality and Data Fusion in Remote Sensing

    No full text
    International audience—Remote sensing is one of the most common ways to extract relevant information about the Earth and our environment. Remote sensing acquisitions can be done by both active (synthetic aperture radar, LiDAR) and passive (optical and thermal range, multispectral and hyperspectral) devices. According to the sensor, a variety of information about the Earth's surface can be obtained. The data acquired by these sensors can provide information about the structure (optical, synthetic aperture radar), elevation (LiDAR) and material content (multi and hyperspectral) of the objects in the image. Once considered together their comple-mentarity can be helpful for characterizing land use (urban analysis, precision agriculture), damage detection (e.g., in natural disasters such as floods, hurricanes, earthquakes, oil-spills in seas), and give insights to potential exploitation of resources (oil fields, minerals). In addition, repeated acquisitions of a scene at different times allows one to monitor natural resources and environmental variables (vegetation phenology, snow cover), anthropological effects (urban sprawl, deforestation), climate changes (desertification, coastal erosion) among others. In this paper, we sketch the current opportunities and challenges related to the exploitation of multimodal data for Earth observation. This is done by leveraging the outcomes of the Data Fusion contests, organized by the IEEE Geoscience and Remote Sensing Society since 2006. We will report on the outcomes of these contests, presenting the multimodal sets of data made available to the community each year, the targeted applications and an analysis of the submitted methods and results: How was multimodality considered and integrated in the processing chain? What were the improvements/new opportunities offered by the fusion? What were the objectives to be addressed and the reported solutions? And from this, what will be the next challenges

    Binary partition tree as a hyperspectral segmentation tool for tropical rainforests

    Full text link
    International audienceIndividual tree crown delineation in tropical forests is of great interest for ecological applications. In this paper we propose a method for hyperspectral image segmentation based on binary tree partitioning. The initial partition is obtained from a watershed transformation in order to make the method computationally more efficient. Then we use a non-parametric region model based on histograms to characterize the regions and the diffusion distance to define the region merging order. The pruning strategy is based on the discontinuity of size increment observed when iteratively merging the regions. The segmentation quality is assessed visually and appears to perform well on most cases, but tree delineation could be improved by including structural information derived from LiDAR data

    HCN emission from translucent gas and UV-illuminated cloud edges revealed by wide-field IRAM 30m maps of Orion B GMC: Revisiting its role as tracer of the dense gas reservoir for star formation

    Get PDF
    We present 5 deg^2 (~250 pc^2) HCN, HNC, HCO+, and CO J=1-0 maps of the Orion B GMC, complemented with existing wide-field [CI] 492 GHz maps, as well as new pointed observations of rotationally excited HCN, HNC, H13CN, and HN13C lines. We detect anomalous HCN J=1-0 hyperfine structure line emission almost everywhere in the cloud. About 70% of the total HCN J=1-0 luminosity arises from gas at A_V < 8 mag. The HCN/CO J=1-0 line intensity ratio shows a bimodal behavior with an inflection point at A_V < 3 mag typical of translucent gas and UV-illuminated cloud edges. We find that most of the HCN J=1-0 emission arises from extended gas with n(H2) < 10^4 cm^-3, even lower density gas if the ionization fraction is > 10^-5 and electron excitation dominates. This result explains the low-A_V branch of the HCN/CO J=1-0 intensity ratio distribution. Indeed, the highest HCN/CO ratios (~0.1) at A_V < 3 mag correspond to regions of high [CI] 492 GHz/CO J=1-0 intensity ratios (>1) characteristic of low-density PDRs. Enhanced FUV radiation favors the formation and excitation of HCN on large scales, not only in dense star-forming clumps. The low surface brightness HCN and HCO+ J=1-0 emission scale with I_FIR (a proxy of the stellar FUV radiation field) in a similar way. Together with CO J=1-0, these lines respond to increasing I_FIR up to G0~20. On the other hand, the bright HCN J=1-0 emission from dense gas in star-forming clumps weakly responds to I_FIR once the FUV radiation field becomes too intense (G0>1500). The different power law scalings (produced by different chemistries, densities, and line excitation regimes) in a single but spatially resolved GMC resemble the variety of Kennicutt-Schmidt law indexes found in galaxy averages. As a corollary for extragalactic studies, we conclude that high HCN/CO J=1-0 line intensity ratios do not always imply the presence of dense gas.Comment: accepted for publication in A&A. 24 pages, 18 figures, plus Appendix. Abridged Abstract. English language not edite

    Gas kinematics around filamentary structures in the Orion B cloud

    Get PDF
    Context. Understanding the initial properties of star-forming material and how they affect the star formation process is key. From an observational point of view, the feedback from young high-mass stars on future star formation properties is still poorly constrained. Aims. In the framework of the IRAM 30m ORION-B large program, we obtained observations of the translucent (2 ≤ AV &lt; 6 mag) and moderately dense gas (6 ≤ AV &lt; 15 mag), which we used to analyze the kinematics over a field of 5 deg2 around the filamentary structures. Methods. We used the Regularized Optimization for Hyper-Spectral Analysis (ROHSA) algorithm to decompose and de-noise the C 18 O(1−0) and 13CO(1−0) signals by taking the spatial coherence of the emission into account. We produced gas column density and mean velocity maps to estimate the relative orientation of their spatial gradients. Results. We identified three cloud velocity layers at different systemic velocities and extracted the filaments in each velocity layer. The filaments are preferentially located in regions of low centroid velocity gradients. By comparing the relative orientation between the column density and velocity gradients of each layer from the ORION-B observations and synthetic observations from 3D kinematic toy models, we distinguish two types of behavior in the dynamics around filaments: (i) radial flows perpendicular to the filament axis that can be either inflows (increasing the filament mass) or outflows and (ii) longitudinal flows along the filament axis. The former case is seen in the Orion B data, while the latter is not identified. We have also identified asymmetrical flow patterns, usually associated with filaments located at the edge of an H II region. Conclusions. This is the first observational study to highlight feedback from H II regions on filament formation and, thus, on star formation in the Orion B cloud. This simple statistical method can be used for any molecular cloud to obtain coherent information on the kinematics

    HCN emission from translucent gas and UV-illuminated cloud edges revealed by wide-field IRAM 30m maps of Orion B GMC: Revisiting its role as tracer of the dense gas reservoir for star formation

    Get PDF
    35 pags., 28 figs., 14 tabs.We present 5 deg^2 (~250 pc^2) HCN, HNC, HCO+, and CO J=1-0 maps of the Orion B GMC, complemented with existing wide-field [CI] 492 GHz maps, as well as new pointed observations of rotationally excited HCN, HNC, H13CN, and HN13C lines. We detect anomalous HCN J=1-0 hyperfine structure line emission almost everywhere in the cloud. About 70% of the total HCN J=1-0 luminosity arises from gas at A_V < 8 mag. The HCN/CO J=1-0 line intensity ratio shows a bimodal behavior with an inflection point at A_V < 3 mag typical of translucent gas and UV-illuminated cloud edges. We find that most of the HCN J=1-0 emission arises from extended gas with n(H2) ~< 10^4 cm^-3, even lower density gas if the ionization fraction is > 10^-5 and electron excitation dominates. This result explains the low-A_V branch of the HCN/CO J=1-0 intensity ratio distribution. Indeed, the highest HCN/CO ratios (~0.1) at A_V < 3 mag correspond to regions of high [CI] 492 GHz/CO J=1-0 intensity ratios (>1) characteristic of low-density PDRs. Enhanced FUV radiation favors the formation and excitation of HCN on large scales, not only in dense star-forming clumps. The low surface brightness HCN and HCO+ J=1-0 emission scale with I_FIR (a proxy of the stellar FUV radiation field) in a similar way. Together with CO J=1-0, these lines respond to increasing I_FIR up to G0~20. On the other hand, the bright HCN J=1-0 emission from dense gas in star-forming clumps weakly responds to I_FIR once the FUV radiation field becomes too intense (G0>1500). The different power law scalings (produced by different chemistries, densities, and line excitation regimes) in a single but spatially resolved GMC resemble the variety of Kennicutt-Schmidt law indexes found in galaxy averages. As a corollary for extragalactic studies, we conclude that high HCN/CO J=1-0 line intensity ratios do not always imply the presence of dense gas.M.G.S.M. and J.R.G. thank the Spanish MICINN for funding support under grant PID2019-106110GB-I00. This work was supported by the French Agence Nationale de la Recherche through the DAOISM grant ANR-21-CE31–0010, and by the Programme National “Physique et Chimie du Milieu Interstellaire” (PCMI) of CNRS/INSU with INC/INP, co-funded by CEA and CNES. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004).Peer reviewe
    corecore