29 research outputs found

    Cartilage intermediate layer protein 1 (CILP1): a novel mediator of cardiac extracellular matrix remodelling

    Get PDF
    Heart failure is accompanied by extracellular matrix (ECM) remodelling, often leading to cardiac fibrosis. In the present study we explored the significance of cartilage intermediate layer protein 1 (CILP1) as a novel mediator of cardiac ECM remodelling. Whole genome transcriptional analysis of human cardiac tissue samples revealed a strong association of CILP1 with many structural (e.g. COL1A2 r2Āæ=Āæ0.83) and non-structural (e.g. TGFB3 r2Āæ=Āæ0.75) ECM proteins. Gene enrichment analysis further underscored the involvement of CILP1 in human cardiac ECM remodelling and TGFƟ signalling. Myocardial CILP1 protein levels were significantly elevated in human infarct tissue and in aortic valve stenosis patients. CILP1 mRNA levels markedly increased in mouse heart after myocardial infarction, transverse aortic constriction, and angiotensin II treatment. Cardiac fibroblasts were found to be the primary source of cardiac CILP1 expression. Recombinant CILP1 inhibited TGFƟ-induced ĀæSMA gene and protein expression in cardiac fibroblasts. In addition, CILP1 overexpression in HEK293 cells strongly (5-fold pĀæ<Āæ0.05) inhibited TGFƟ signalling activity. In conclusion, our study identifies CILP1 as a new cardiac matricellular protein interfering with pro-fibrotic TGFƟ signalling, and as a novel sensitive marker for cardiac fibrosis

    Over-expression of Grhl2 causes spina bifida in the Axial defects mutant mouse

    Get PDF
    Cranial neural tube defects (NTDs) occur in mice carrying mutant alleles of many different genes, whereas isolated spinal NTDs (spina bifida) occur in fewer models, despite being common human birth defects. Spina bifida occurs at high frequency in the Axial defects (Axd) mouse mutant but the causative gene is not known. In the current study, the Axd mutation was mapped by linkage analysis. Within the critical genomic region, sequencing did not reveal a coding mutation whereas expression analysis demonstrated significant up-regulation of grainyhead-like 2 (Grhl2) in Axd mutant embryos. Expression of other candidate genes did not differ between genotypes. In order to test the hypothesis that over-expression of Grhl2 causes Axd NTDs, we performed a genetic cross to reduce Grhl2 function in Axd heterozygotes. Grhl2 loss of function mutant mice were generated and displayed both cranial and spinal NTDs. Compound heterozygotes carrying both loss (Grhl2 null) and putative gain of function (Axd) alleles exhibited normalization of spinal neural tube closure compared with Axd/+ littermates, which exhibit delayed closure. Grhl2 is expressed in the surface ectoderm and hindgut endoderm in the spinal region, overlapping with grainyhead-like 3 (Grhl3). Axd mutants display delayed eyelid closure, as reported in Grhl3 null embryos. Moreover, Axd mutant embryos exhibited increased ventral curvature of the spinal region and reduced proliferation in the hindgut, reminiscent of curly tail embryos, which carry a hypomorphic allele of Grhl3. Overall, our data suggest that defects in Axd mutant embryos result from over-expression of Grhl2

    Piezo1 Mechanosensitive Ion Channel Mediates Stretch-Induced Nppb Expression in Adult Rat Cardiac Fibroblasts

    No full text
    In response to stretch, cardiac tissue produces natriuretic peptides, which have been suggested to have beneficial effects in heart failure patients. In the present study, we explored the mechanism of stretch-induced brain natriuretic peptide (Nppb) expression in cardiac fibroblasts. Primary adult rat cardiac fibroblasts subjected to 4 h or 24 h of cyclic stretch (10% 1 Hz) showed a 6.6-fold or 3.2-fold (p 20-fold higher in cardiomyocytes than in cardiac fibroblasts, indicating that cardiac fibroblasts were not the main source of Nppb in the healthy heart. Yoda1, an agonist of the Piezo1 mechanosensitive ion channel, increased Nppb expression 2.1-fold (p < 0.05) and significantly induced other extracellular matrix (ECM) remodeling genes. Silencing of Piezo1 reduced the stretch-induced Nppb and Tgfb1 expression in cardiac fibroblasts. In conclusion, our study identifies Piezo1 as mediator of stretch-induced Nppb expression, as well as other remodeling genes, in cardiac fibroblasts

    Cartilage intermediate layer protein 1 (CILP1):A novel mediator of cardiac extracellular matrix remodelling

    No full text
    Abstract Heart failure is accompanied by extracellular matrix (ECM) remodelling, often leading to cardiac fibrosis. In the present study we explored the significance of cartilage intermediate layer protein 1 (CILP1) as a novel mediator of cardiac ECM remodelling. Whole genome transcriptional analysis of human cardiac tissue samples revealed a strong association of CILP1 with many structural (e.g. COL1A2 r2ā€‰=ā€‰0.83) and non-structural (e.g. TGFB3 r2ā€‰=ā€‰0.75) ECM proteins. Gene enrichment analysis further underscored the involvement of CILP1 in human cardiac ECM remodelling and TGFĪ² signalling. Myocardial CILP1 protein levels were significantly elevated in human infarct tissue and in aortic valve stenosis patients. CILP1 mRNA levels markedly increased in mouse heart after myocardial infarction, transverse aortic constriction, and angiotensin II treatment. Cardiac fibroblasts were found to be the primary source of cardiac CILP1 expression. Recombinant CILP1 inhibited TGFĪ²-induced Ī±SMA gene and protein expression in cardiac fibroblasts. In addition, CILP1 overexpression in HEK293 cells strongly (5-fold pā€‰<ā€‰0.05) inhibited TGFĪ² signalling activity. In conclusion, our study identifies CILP1 as a new cardiac matricellular protein interfering with pro-fibrotic TGFĪ² signalling, and as a novel sensitive marker for cardiac fibrosis

    A directed network analysis of the cardiome identifies molecular pathways contributing to the development of HFpEF.

    No full text
    AIMS: The metabolic syndrome and associated comorbidities, like diabetes, hypertension and obesity, have been implicated in the development of heart failure with preserved ejection fraction (HFpEF). The molecular mechanisms underlying the development of HFpEF remain to be elucidated. We developed a cardiome-directed network analysis and applied this to high throughput cardiac RNA-sequencing data from a well-established rat model of HFpEF, the obese and hypertensive ZSF1 rat. With this novel system biology approach, we explored the mechanisms underlying HFpEF. METHODS AND RESULTS: Unlike ZSF1-Lean, ZSF1-Obese and ZSF1-Obese rats fed with a high-fat diet (HFD) developed diastolic dysfunction and reduced exercise capacity. The number of differentially expressed genes amounted to 1591 and 1961 for the ZSF1-Obese vs. Lean and ZSF1-Obese+HFD vs. Lean comparison, respectively. For the cardiome-directed network analysis (CDNA) eleven biological processes related to cardiac disease were selected and used as input for the STRING protein-protein interaction database. The resulting STRING network comprised 3.460 genes and 186.653 edges. Subsequently differentially expressed genes were projected onto this network. The connectivity between the core processes within the network was assessed and important bottleneck and hub genes were identified based on their network topology. Classical gene enrichment analysis highlighted many processes related to mitochondrial oxidative metabolism. The CDNA indicated high interconnectivity between five core processes: endothelial function, inflammation, apoptosis/autophagy, sarcomere/cytoskeleton and extracellular matrix. The transcription factors Myc and Peroxisome Proliferator-Activated Receptor-Ī± (Ppara) were identified as important bottlenecks in the overall network topology, with Ppara acting as important link between cardiac metabolism, inflammation and endothelial function. CONCLUSIONS: This study presents a novel systems biology approach, directly applicable to other cardiac disease-related transcriptome data sets. The CDNA approach enabled the identification of critical processes and genes, including Myc and Ppara, that are putatively involved in the development of HFpEF.status: publishe

    A directed network analysis of the cardiome identifies molecular pathways contributing to the development of HFpEF

    No full text
    Aims: The metabolic syndrome and associated comorbidities, like diabetes, hypertension and obesity, have been implicated in the development of heart failure with preserved ejection fraction (HFpEF). The molecular mechanisms underlying the development of HFpEF remain to be elucidated. We developed a cardiome-directed network analysis and applied this to high throughput cardiac RNA-sequencing data from a well-established rat model of HFpEF, the obese and hypertensive ZSF1 rat. With this novel system biology approach, we explored the mechanisms underlying HFpEF.Methods and results: Unlike ZSF1-Lean, ZSF1-Obese and ZSF1-Obese rats fed with a high-fat diet (HFD) developed diastolic dysfunction and reduced exercise capacity. The number of differentially expressed genes amounted to 1591 and 1961 for the ZSF1-Obese vs. Lean and ZSF1-Obese+HFD vs. Lean comparison, respectively. For the cardiome-directed network analysis (CDNA) eleven biological processes related to cardiac disease were selected and used as input for the STRING protein-protein interaction database. The resulting STRING network comprised 3.460 genes and 186.653 edges. Subsequently differentially expressed genes were projected onto this network. The connectivity between the core processes within the network was assessed and important bottleneck and hub genes were identified based on their network topology.Classical gene enrichment analysis highlighted many processes related to mitochondrial oxidative metabolism. The CDNA indicated high interconnectivity between five core processes: endothelial function, inflammation, apoptosis/autophagy, sarcomere/cytoskeleton and extracellular matrix. The transcription factors Myc and Peroxisome Proliferator-Activated Receptor-alpha (Ppara) were identified as important bottlenecks in the overall network topology, with Ppara acting as important link between cardiac metabolism, inflammation and endothelial function.Conclusions: This study presents a novel systems biology approach, directly applicable to other cardiac disease related transcriptome data sets. The CDNA approach enabled the identification of critical processes and genes, including Myc and Ppara, that are putatively involved in the development of HFpEF.</p

    Metabolic alterations in a rat model of Takotsubo syndrome

    Get PDF
    This work was supported by British Heart Foundation, Award FS/16/39/32174 [Early Metabolic Intervention in Acute Stress-Induced (Tako-tsubo) Cardiomyopathy] to D.K.D. D.K.D. is supported by the British Heart Foundation (FS/RTF/20/30009, NH/19/1/34595, PG/18/35/33786, CS/17/4/32960, PG/15/88/31780, PG/17/64/33205), Chest Heart and Stroke Scotland (19/53), Tenovus Scotland (G.18.01), Friends of Anchor, and Grampian NHS-Endowments. C.M. is supported by the Deutsche Forschungsgemeinschaft (Ma 2528/7-1; SFB 894; TRR-219), the Federal Ministry of Education and Research (BMBF; 01EO1504), and the Barth syndrome foundation.Peer reviewedPublisher PD

    Metabolic alterations in a rat model of Takotsubo syndrome

    Get PDF
    AIMS: Cardiac energetic impairment is a major finding in takotsubo patients. We investigate specific metabolic adaptations to direct future therapies. METHODS AND RESULTS: An isoprenaline-injection female rat model (versus sham) was studied at day-3; recovery assessed at day-7. Substrate uptake, metabolism, inflammation and remodelling were investigated by 18F-FDG-PET, metabolomics, qPCR and WB. Isolated cardiomyocytes were patch-clamped during stress protocols for redox states of NAD(P)H/FAD or [Ca2+]c, [Ca2+]m and sarcomere length. Mitochondrial respiration was assessed by seahorse/Clark electrode (glycolytic and Ī²-oxidation substrates).Cardiac 18F-FDG metabolic rate was increased in takotsubo (pā€‰=ā€‰0.006), as were expression of GLUT4-RNA/GLUT1/HK2-RNA and HK activity (all pā€‰ā€‰0.0001). Both lactate and pyruvate were lower (pā€‰<ā€‰0.05) despite increases in LDH-RNA and PDH (pā€‰<ā€‰0.05 both). Ī²-oxidation enzymes CPT1b-RNA and 3KAT were increased (pā€‰<ā€‰0.01) but malonyl-CoA (CPT-1 regulator) was upregulated (pā€‰=ā€‰0.01) with decreased fatty acids and acyl-carnitines levels (pā€‰=ā€‰0.0001-0.02). Krebs cycle intermediates Ī±-ketoglutarate and succinyl-carnitine were reduced (pā€‰<ā€‰0.05) as was cellular ATP reporter dihydroorotate (pā€‰=ā€‰0.003). Mitochondrial Ca2+ uptake during high workload was impaired on day-3 (pā€‰<ā€‰0.0001), inducing oxidation of NAD(P)H and FAD (pā€‰=ā€‰0.03) but resolved by day-7. There were no differences in mitochondrial respiratory function, sarcomere shortening or [Ca2+] transients of isolated cardiomyocytes, implying preserved integrity of both mitochondria and cardiomyocyte. Inflammation and remodelling were upregulated - increased CD68-RNA, collagen RNA/protein and skeletal actin RNA (all pā€‰<ā€‰0.05). CONCLUSION: Dys-regulation of glucose and lipid metabolic pathways with decreases in final glycolytic and Ī²-oxidation metabolites and reduced availability of Krebs intermediates characterises takotsubo myocardium. The energetic deficit accompanies defective Ca2+ handling, inflammation and upregulation of remodelling pathways, with preservation of sarcomeric and mitochondrial integrity. TRANSLATIONAL PERSPECTIVE: The simultaneous dysregulation in the glycolytic and beta-oxidation pathways which underlies the energetic deficit of the takotsubo heart supports further testing of currently available metabolic modulators as possible candidates for successful therapy, as well as targeting the inflammatory and remodelling pathways
    corecore