474 research outputs found
Turbulent length-time scales distributions in hydraulic jumps
Air–water flow measurements were performed in hydraulic jump flows for a range of inflow Froude numbers. The experiments were conducted in a large-sized facility using phase-detection intrusive probes. The void fraction measurements showed the presence of an advective diffusion shear layer where the air concentration vertical distributions were successfully compared with an analytical solution of the advective diffusion equation for air bubbles. In the air–water shear layer, a new empirical relationship between the maximum air concentration decay as a function of both the distance from the jump toe and the inflow Froude number was derived. Air–water turbulent time and length scales were deduced from auto- and cross-correlation analyses based on the method of Chanson (2007). The result provided some characteristic transverse time and length scales of the eddy structures advecting the air bubbles in the developing shear layer. The turbulence time scale data showed an increase with the relative elevation above the bed, as well as some decrease with increasing distance from the toe. The dimensionless integral turbulent length scale Lxz/d1 was closely related to the inflow depth
Bubble Entrainment, Spray and Splashing at Hydraulic Jumps
The sudden transition from a high-velocity, supercritical open channel flow into a slow-moving sub-critical flow is a hydraulic jump. Such a flow is characterised by a sudden rise of the free-surface, with some strong energy dissipation and air entrainment, waves and spray. New two-phase flow measurements were performed in the developing flow region using a large-size facility operating at large Reynolds numbers. The experimental results demonstrated the complexity of the flow with a developing mixing layer in which entrained bubbles are advected in a high shear stress flow. The relationship between bubble count rates and void fractions was non-unique in the shear zone, supporting earlier observations of some form of double diffusion process between momentum and air bubbles. In the upper region, the flow consisted primarily of water drops and packets surrounded by air. Visually significant pray and splashing were significant above the jump roller. The present study is the first comprehensive study detailing the two-phase flow properties of both the bubbly and spray regions of hydraulic jumps, a first step towards understanding the interactions between bubble entrainment and droplet ejection processes
Hydraulic engineering in the 21st century: Where to?
For centuries, hydraulic engineers were at the forefront of science. The last forty years marked a change of perception in our society with a focus on environmental sustainability and management, particularly in developed countries. Herein, the writer illustrates his strong belief that the future of hydraulic engineering lies upon a combination of innovative engineering, research excellence and higher education of quality. This drive continues a long tradition established by eminent scholars like Arthur Thomas IPPEN, John Fisher KENNEDY and Hunter ROUSE
Flow patterns in nappe flow regime down low gradient stepped chutes
Although modern gravity dam spillways include often steep chutes operating in skimming flow regime, succession of free-falling nappes (i.e. nappe flow regime) are more common on low gradient chutes and cascades, and this flow situation received little attention to date. New experiments were conducted in nappe flows without hydraulic jump in two large-size facilities with flat slopes. The flow on the stepped cascade displayed complex, three-dimensional patterns. Detailed air-water flow measurements were performed in the jet, at nappe impact and in the downstream flow region. Key results demonstrated that the flow on each step was rapidly varied (RVF), highly three-dimensional and strongly aerated
Bubbly two-phase flow in hydraulic jumps at large Froude numbers
A hydraulic jump is a sudden, rapid transition from a supercritical flow to a subcritical flow. At large inflow Froude numbers, the jump is characterized by a significant amount of entrained air. For this paper, the bubbly two-phase flow properties of steady and strong hydraulic jumps were investigated experimentally. The results demonstrate that the strong air entrainment rate and the depth-averaged void-fraction data highlight a rapid deaeration of the jump roller. The results suggest that the hydraulic jumps are effective aerators and that the rate of detrainment is comparatively smaller at the largest Froude numbers. © 2011 American Society of Civil Engineers
Hydraulic Performances of Minimum Energy Loss Culverts in Australia
Culverts are among the most common hydraulic structures. Modern designs do not differ from ancient structures and are often characterised by significant afflux at design flows. A significant advance was the development of the Minimum Energy Loss (MEL) culverts in the late 1950s. The design technique allows a drastic reduction in upstream flooding associated with lower costs. The development and operational performances of this type of structure is presented. The successful operation of MEL culverts for more than 40 years is documented with first-hand records during and after floods. The experiences demonstrate the design soundness while highlighting the importance of the hydraulic expertise of the design engineers
Hydraulics of aerated flows: qui pro quo?
In turbulent free-surface flows, the deformation of the surface leads to air bubble entrainment and droplet projections when the turbulent shear stress is greater than the surface tension stress that resists to the interfacial breakup. These complex processes at the water-air interface have been the focus of extensive experimental, numerical and theoretical studies over last two decades and this paper reviews the key advancements. It is highlighted that the recent progress in metrology enables the detailed measurements of a range of air-water flow properties under controlled flow conditions, representing the sine qua non requirement for the development of improved physical understanding and for validating phenomenological and numerical models. The author believes that the future research into aerated flow hydraulics should focus on field measurements of high quality, development of new measurement approaches and data analyses tools, computational fluid dynamics modelling of aerated flows, and the mechanics of aerated flows in conduits
Discussion of “Auguste Graeff: Dam Designer and Hydraulic Engineer” by Willi H. Hager and Corrado Gisonni
The work of Auguste Graeff is rarely acknowledged for his true contribution to hydraulic engineering and structures. Herein further information on Graeff and his co-worker Emile Delocre are presented together with the influence of their work in France and overseas, and several curved gravity dams built around Saint-Etienne based upon the Gouffre d'Enfer dam design. Altogether Auguste Graeff and Emile Delocre had a significant influence on gravity dam design in France and overseas
Unsteady Two-Dimensional Orifice Flow: A Large-Size Experimental Investigation
Orifice flows were used as water clocks since the Antiquity up to the 16-th century. Today orifices and nozzles are used for measuring discharges. Most works were conducted with steady flow conditions and there is little information on the unsteady flow pattern. In this study, the writers describe an experimental investigation of an unsteady orifice flow discharging vertically. The study was conducted in a large-size facility with a rectangular orifice (0.75-m by 0.07-m) discharging up to 1.2 m3 in about 10 seconds. The study presents new information on the unsteady flow patterns, the discharge capacity and the velocity field in the reservoir. The results are compared with 'classical' orifice flow results
Free-surface profiles, velocity and pressure distributions on a broad-crested weir: a physical study
Basic experiments were conducted on a large-size broad-crested weir with a rounded corner. Detailed free-surface, velocity, and pressure measurements were performed for a range of flow conditions. The results showed the rapid flow distribution at the upstream end of the weir and next to the weir brink at large flow rates. The flow properties above the crest were analyzed taking into account the nonuniform velocity and nonhydrostatic pressure distributions. Introducing some velocity and pressure correction coefficients, it is shown that critical flow conditions were achieved above the weir crest for 0.1 < x/L-crest < 1. The velocity measurements highlighted a developing boundary layer. The data differed from the smooth turbulent boundary layer theory, although the present results were consistent with earlier studies. On average, the boundary stress was approximately tau(o)/(rho x g x H-1) 0.0015-0.0025. DOI: 10.1061/(ASCE)IR.1943-4774.0000515. (C) 2012 American Society of Civil Engineers
- …